serial_test_flow_dissector_namespace manipulates both the root net
namespace and a dedicated non-root net namespace. If for some reason a
program attach on root namespace succeeds while it was expected to
fail, the unexpected program will remain attached to the root namespace,
possibly affecting other runs or even other tests in the same run.
Fix undesired test failure side effect by explicitly detaching programs
on failing tests expecting attach to fail. As a side effect of this
change, do not test errno value if the tested operation do not fail.
Fixes: 284ed00a59dd ("selftests/bpf: migrate flow_dissector namespace exclusivity test")
Signed-off-by: Alexis Lothoré (eBPF Foundation) <alexis.lothore(a)bootlin.com>
---
This small fix addresses an issue discovered while trying to add a new
test in my recently merged work on flow_dissector migration. This new
test is still only present in bpf-next, hence this fix does not target
the bpf tree but the bpf-next tree.
---
tools/testing/selftests/bpf/prog_tests/flow_dissector.c | 16 +++++++++++-----
1 file changed, 11 insertions(+), 5 deletions(-)
diff --git a/tools/testing/selftests/bpf/prog_tests/flow_dissector.c b/tools/testing/selftests/bpf/prog_tests/flow_dissector.c
index 8e6e483fead3f71f21e2223c707c6d4fb548a61e..08bae13248c4a8ab0bfa356a34b2738964d97f4c 100644
--- a/tools/testing/selftests/bpf/prog_tests/flow_dissector.c
+++ b/tools/testing/selftests/bpf/prog_tests/flow_dissector.c
@@ -525,11 +525,14 @@ void serial_test_flow_dissector_namespace(void)
ns = open_netns(TEST_NS);
if (!ASSERT_OK_PTR(ns, "enter non-root net namespace"))
goto out_clean_ns;
-
err = bpf_prog_attach(prog_fd, 0, BPF_FLOW_DISSECTOR, 0);
+ if (!ASSERT_ERR(err,
+ "refuse new flow dissector in non-root net namespace"))
+ bpf_prog_detach2(prog_fd, 0, BPF_FLOW_DISSECTOR);
+ else
+ ASSERT_EQ(errno, EEXIST,
+ "refused because of already attached prog");
close_netns(ns);
- ASSERT_ERR(err, "refuse new flow dissector in non-root net namespace");
- ASSERT_EQ(errno, EEXIST, "refused because of already attached prog");
/* If no flow dissector is attached to the root namespace, we must
* be able to attach one to a non-root net namespace
@@ -545,8 +548,11 @@ void serial_test_flow_dissector_namespace(void)
* a flow dissector to root namespace must fail
*/
err = bpf_prog_attach(prog_fd, 0, BPF_FLOW_DISSECTOR, 0);
- ASSERT_ERR(err, "refuse new flow dissector on root namespace");
- ASSERT_EQ(errno, EEXIST, "refused because of already attached prog");
+ if (!ASSERT_ERR(err, "refuse new flow dissector on root namespace"))
+ bpf_prog_detach2(prog_fd, 0, BPF_FLOW_DISSECTOR);
+ else
+ ASSERT_EQ(errno, EEXIST,
+ "refused because of already attached prog");
ns = open_netns(TEST_NS);
bpf_prog_detach2(prog_fd, 0, BPF_FLOW_DISSECTOR);
---
base-commit: 04e7b00083a120d60511443d900a5cc10dbed263
change-id: 20241128-small_flow_test_fix-0c53624a3c4c
Best regards,
--
Alexis Lothoré, Bootlin
Embedded Linux and Kernel engineering
https://bootlin.com
From: Edward Cree <ecree.xilinx(a)gmail.com>
The original semantics of ntuple filters with FLOW_RSS were not
fully understood by all drivers, some ignoring the ring_cookie from
the flow rule. Require this support to be explicitly declared by
the driver for filters relying on it to be inserted, and add self-
test coverage for this functionality.
Also teach ethtool_check_max_channel() about this.
Edward Cree (5):
net: ethtool: only allow set_rxnfc with rss + ring_cookie if driver
opts in
net: ethtool: account for RSS+RXNFC add semantics when checking
channel count
selftest: include dst-ip in ethtool ntuple rules
selftest: validate RSS+ntuple filters with nonzero ring_cookie
selftest: extend test_rss_context_queue_reconfigure for action
addition
drivers/net/ethernet/sfc/ef100_ethtool.c | 1 +
drivers/net/ethernet/sfc/ethtool.c | 1 +
include/linux/ethtool.h | 4 +
net/ethtool/common.c | 42 +++++++---
net/ethtool/ioctl.c | 5 ++
.../selftests/drivers/net/hw/rss_ctx.py | 79 +++++++++++++++++--
6 files changed, 113 insertions(+), 19 deletions(-)
If you wish to utilise a pidfd interface to refer to the current process or
thread it is rather cumbersome, requiring something like:
int pidfd = pidfd_open(getpid(), 0 or PIDFD_THREAD);
...
close(pidfd);
Or the equivalent call opening /proc/self. It is more convenient to use a
sentinel value to indicate to an interface that accepts a pidfd that we
simply wish to refer to the current process thread.
This series introduces sentinels for this purposes which can be passed as
the pidfd in this instance rather than having to establish a dummy fd for
this purpose.
It is useful to refer to both the current thread from the userland's
perspective for which we use PIDFD_SELF, and the current process from the
userland's perspective, for which we use PIDFD_SELF_PROCESS.
There is unfortunately some confusion between the kernel and userland as to
what constitutes a process - a thread from the userland perspective is a
process in userland, and a userland process is a thread group (more
specifically the thread group leader from the kernel perspective). We
therefore alias things thusly:
* PIDFD_SELF_THREAD aliased by PIDFD_SELF - use PIDTYPE_PID.
* PIDFD_SELF_THREAD_GROUP alised by PIDFD_SELF_PROCESS - use PIDTYPE_TGID.
In all of the kernel code we refer to PIDFD_SELF_THREAD and
PIDFD_SELF_THREAD_GROUP. However we expect users to use PIDFD_SELF and
PIDFD_SELF_PROCESS.
This matters for cases where, for instance, a user unshare()'s FDs or does
thread-specific signal handling and where the user would be hugely confused
if the FDs referenced or signal processed referred to the thread group
leader rather than the individual thread.
We ensure that pidfd_send_signal() and pidfd_getfd() work correctly, and
assert as much in selftests. All other interfaces except setns() will work
implicitly with this new interface, however it doesn't make sense to test
waitid(P_PIDFD, ...) as waiting on ourselves is a blocking operation.
In the case of setns() we explicitly disallow use of PIDFD_SELF* as it
doesn't make sense to obtain the namespaces of our own process, and it
would require work to implement this functionality there that would be of
no use.
We also do not provide the ability to utilise PIDFD_SELF* in ordinary fd
operations such as open() or poll(), as this would require extensive work
and be of no real use.
v6:
* Avoid static inline in UAPI header as suggested by Pedro.
* Place PIDFD_SELF values out of range of errors and any other sentinel as
suggested by Pedro.
v5:
* Fixup self test dependencies on pidfd/pidfd.h.
https://lore.kernel.org/linux-mm/cover.1729848252.git.lorenzo.stoakes@oracl…
v4:
* Avoid returning an fd in the __pidfd_get_pid() function as pointed out by
Christian, instead simply always pin the pid and maintain fd scope in the
helper alone.
* Add wrapper header file in tools/include/linux to allow for import of
UAPI pidfd.h header without encountering the collision between system
fcntl.h and linux/fcntl.h as discussed with Shuah and John.
* Fixup tests to import the UAPI pidfd.h header working around conflicts
between system fcntl.h and linux/fcntl.h which the UAPI pidfd.h imports,
as reported by Shuah.
* Use an int for pidfd_is_self_sentinel() to avoid any dependency on
stdbool.h in userland.
https://lore.kernel.org/linux-mm/cover.1729198898.git.lorenzo.stoakes@oracl…
v3:
* Do not fput() an invalid fd as reported by kernel test bot.
* Fix unintended churn from moving variable declaration.
https://lore.kernel.org/linux-mm/cover.1729073310.git.lorenzo.stoakes@oracl…
v2:
* Fix tests as reported by Shuah.
* Correct RFC version lore link.
https://lore.kernel.org/linux-mm/cover.1728643714.git.lorenzo.stoakes@oracl…
Non-RFC v1:
* Removed RFC tag - there seems to be general consensus that this change is
a good idea, but perhaps some debate to be had on implementation. It
seems sensible then to move forward with the RFC flag removed.
* Introduced PIDFD_SELF_THREAD, PIDFD_SELF_THREAD_GROUP and their aliases
PIDFD_SELF and PIDFD_SELF_PROCESS respectively.
* Updated testing accordingly.
https://lore.kernel.org/linux-mm/cover.1728578231.git.lorenzo.stoakes@oracl…
RFC version:
https://lore.kernel.org/linux-mm/cover.1727644404.git.lorenzo.stoakes@oracl…
Lorenzo Stoakes (5):
pidfd: extend pidfd_get_pid() and de-duplicate pid lookup
pidfd: add PIDFD_SELF_* sentinels to refer to own thread/process
tools: testing: separate out wait_for_pid() into helper header
selftests: pidfd: add pidfd.h UAPI wrapper
selftests: pidfd: add tests for PIDFD_SELF_*
include/linux/pid.h | 34 ++++-
include/uapi/linux/pidfd.h | 10 ++
kernel/exit.c | 4 +-
kernel/nsproxy.c | 1 +
kernel/pid.c | 65 +++++---
kernel/signal.c | 29 +---
tools/include/linux/pidfd.h | 14 ++
tools/testing/selftests/cgroup/test_kill.c | 2 +-
.../pid_namespace/regression_enomem.c | 2 +-
tools/testing/selftests/pidfd/Makefile | 3 +-
tools/testing/selftests/pidfd/pidfd.h | 28 +---
.../selftests/pidfd/pidfd_getfd_test.c | 141 ++++++++++++++++++
tools/testing/selftests/pidfd/pidfd_helpers.h | 39 +++++
.../selftests/pidfd/pidfd_setns_test.c | 11 ++
tools/testing/selftests/pidfd/pidfd_test.c | 76 ++++++++--
15 files changed, 371 insertions(+), 88 deletions(-)
create mode 100644 tools/include/linux/pidfd.h
create mode 100644 tools/testing/selftests/pidfd/pidfd_helpers.h
--
2.47.0
From: Mark Brown <broonie(a)kernel.org>
[ Upstream commit 3e360ef0c0a1fb6ce9a302e40b8057c41ba8a9d2 ]
When building for streaming SVE the irritator for SVE skips updates of both
P0 and FFR. While FFR is skipped since it might not be present there is no
reason to skip corrupting P0 so switch to an instruction valid in streaming
mode and move the ifdef.
Signed-off-by: Mark Brown <broonie(a)kernel.org>
Link: https://lore.kernel.org/r/20241107-arm64-fp-stress-irritator-v2-3-c4b9622e3…
Signed-off-by: Catalin Marinas <catalin.marinas(a)arm.com>
Signed-off-by: Sasha Levin <sashal(a)kernel.org>
---
tools/testing/selftests/arm64/fp/sve-test.S | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/arm64/fp/sve-test.S b/tools/testing/selftests/arm64/fp/sve-test.S
index 07f14e279a904..7784c684a865b 100644
--- a/tools/testing/selftests/arm64/fp/sve-test.S
+++ b/tools/testing/selftests/arm64/fp/sve-test.S
@@ -459,7 +459,8 @@ function irritator_handler
movi v9.16b, #2
movi v31.8b, #3
// And P0
- rdffr p0.b
+ ptrue p0.d
+#ifndef SSVE
// And FFR
wrffr p15.b
--
2.43.0
Hello,
This patchset is our exploration of how to support 1G pages in guest_memfd, and
how the pages will be used in Confidential VMs.
The patchset covers:
+ How to get 1G pages
+ Allowing mmap() of guest_memfd to userspace so that both private and shared
memory can use the same physical pages
+ Splitting and reconstructing pages to support conversions and mmap()
+ How the VM, userspace and guest_memfd interact to support conversions
+ Selftests to test all the above
+ Selftests also demonstrate the conversion flow between VM, userspace and
guest_memfd.
Why 1G pages in guest memfd?
Bring guest_memfd to performance and memory savings parity with VMs that are
backed by HugeTLBfs.
+ Performance is improved with 1G pages by more TLB hits and faster page walks
on TLB misses.
+ Memory savings from 1G pages comes from HugeTLB Vmemmap Optimization (HVO).
Options for 1G page support:
1. HugeTLB
2. Contiguous Memory Allocator (CMA)
3. Other suggestions are welcome!
Comparison between options:
1. HugeTLB
+ Refactor HugeTLB to separate allocator from the rest of HugeTLB
+ Pro: Graceful transition for VMs backed with HugeTLB to guest_memfd
+ Near term: Allows co-tenancy of HugeTLB and guest_memfd backed VMs
+ Pro: Can provide iterative steps toward new future allocator
+ Unexplored: Managing userspace-visible changes
+ e.g. HugeTLB's free_hugepages will decrease if HugeTLB is used,
but not when future allocator is used
2. CMA
+ Port some HugeTLB features to be applied on CMA
+ Pro: Clean slate
What would refactoring HugeTLB involve?
(Some refactoring was done in this RFC, more can be done.)
1. Broadly involves separating the HugeTLB allocator from the rest of HugeTLB
+ Brings more modularity to HugeTLB
+ No functionality change intended
+ Likely step towards HugeTLB's integration into core-mm
2. guest_memfd will use just the allocator component of HugeTLB, not including
the complex parts of HugeTLB like
+ Userspace reservations (resv_map)
+ Shared PMD mappings
+ Special page walkers
What features would need to be ported to CMA?
+ Improved allocation guarantees
+ Per NUMA node pool of huge pages
+ Subpools per guest_memfd
+ Memory savings
+ Something like HugeTLB Vmemmap Optimization
+ Configuration/reporting features
+ Configuration of number of pages available (and per NUMA node) at and
after host boot
+ Reporting of memory usage/availability statistics at runtime
HugeTLB was picked as the source of 1G pages for this RFC because it allows a
graceful transition, and retains memory savings from HVO.
To illustrate this, if a host machine uses HugeTLBfs to back VMs, and a
confidential VM were to be scheduled on that host, some HugeTLBfs pages would
have to be given up and returned to CMA for guest_memfd pages to be rebuilt from
that memory. This requires memory to be reserved for HVO to be removed and
reapplied on the new guest_memfd memory. This not only slows down memory
allocation but also trims the benefits of HVO. Memory would have to be reserved
on the host to facilitate these transitions.
Improving how guest_memfd uses the allocator in a future revision of this RFC:
To provide an easier transition away from HugeTLB, guest_memfd's use of HugeTLB
should be limited to these allocator functions:
+ reserve(node, page_size, num_pages) => opaque handle
+ Used when a guest_memfd inode is created to reserve memory from backend
allocator
+ allocate(handle, mempolicy, page_size) => folio
+ To allocate a folio from guest_memfd's reservation
+ split(handle, folio, target_page_size) => void
+ To take a huge folio, and split it to smaller folios, restore to filemap
+ reconstruct(handle, first_folio, nr_pages) => void
+ To take a folio, and reconstruct a huge folio out of nr_pages from the
first_folio
+ free(handle, folio) => void
+ To return folio to guest_memfd's reservation
+ error(handle, folio) => void
+ To handle memory errors
+ unreserve(handle) => void
+ To return guest_memfd's reservation to allocator backend
Userspace should only provide a page size when creating a guest_memfd and should
not have to specify HugeTLB.
Overview of patches:
+ Patches 01-12
+ Many small changes to HugeTLB, mostly to separate HugeTLBfs concepts from
HugeTLB, and to expose HugeTLB functions.
+ Patches 13-16
+ Letting guest_memfd use HugeTLB
+ Creation of each guest_memfd reserves pages from HugeTLB's global hstate
and puts it into the guest_memfd inode's subpool
+ Each folio allocation takes a page from the guest_memfd inode's subpool
+ Patches 17-21
+ Selftests for new HugeTLB features in guest_memfd
+ Patches 22-24
+ More small changes on the HugeTLB side to expose functions needed by
guest_memfd
+ Patch 25:
+ Uses the newly available functions from patches 22-24 to split HugeTLB
pages. In this patch, HugeTLB folios are always split to 4K before any
usage, private or shared.
+ Patches 26-28
+ Allow mmap() in guest_memfd and faulting in shared pages
+ Patch 29
+ Enables conversion between private/shared pages
+ Patch 30
+ Required to zero folios after conversions to avoid leaking initialized
kernel memory
+ Patch 31-38
+ Add selftests to test mapping pages to userspace, guest/host memory
sharing and update conversions tests
+ Patch 33 illustrates the conversion flow between VM/userspace/guest_memfd
+ Patch 39
+ Dynamically split and reconstruct HugeTLB pages instead of always
splitting before use. All earlier selftests are expected to still pass.
TODOs:
+ Add logic to wait for safe_refcount [1]
+ Look into lazy splitting/reconstruction of pages
+ Currently, when the KVM_SET_MEMORY_ATTRIBUTES is invoked, not only is the
mem_attr_array and faultability updated, the pages in the requested range
are also split/reconstructed as necessary. We want to look into delaying
splitting/reconstruction to fault time.
+ Solve race between folios being faulted in and being truncated
+ When running private_mem_conversions_test with more than 1 vCPU, a folio
getting truncated may get faulted in by another process, causing elevated
mapcounts when the folio is freed (VM_BUG_ON_FOLIO).
+ Add intermediate splits (1G should first split to 2M and not split directly to
4K)
+ Use guest's lock instead of hugetlb_lock
+ Use multi-index xarray/replace xarray with some other data struct for
faultability flag
+ Refactor HugeTLB better, present generic allocator interface
Please let us know your thoughts on:
+ HugeTLB as the choice of transitional allocator backend
+ Refactoring HugeTLB to provide generic allocator interface
+ Shared/private conversion flow
+ Requiring user to request kernel to unmap pages from userspace using
madvise(MADV_DONTNEED)
+ Failing conversion on elevated mapcounts/pincounts/refcounts
+ Process of splitting/reconstructing page
+ Anything else!
[1] https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quic…
Ackerley Tng (37):
mm: hugetlb: Simplify logic in dequeue_hugetlb_folio_vma()
mm: hugetlb: Refactor vma_has_reserves() to should_use_hstate_resv()
mm: hugetlb: Remove unnecessary check for avoid_reserve
mm: mempolicy: Refactor out policy_node_nodemask()
mm: hugetlb: Refactor alloc_buddy_hugetlb_folio_with_mpol() to
interpret mempolicy instead of vma
mm: hugetlb: Refactor dequeue_hugetlb_folio_vma() to use mpol
mm: hugetlb: Refactor out hugetlb_alloc_folio
mm: truncate: Expose preparation steps for truncate_inode_pages_final
mm: hugetlb: Expose hugetlb_subpool_{get,put}_pages()
mm: hugetlb: Add option to create new subpool without using surplus
mm: hugetlb: Expose hugetlb_acct_memory()
mm: hugetlb: Move and expose hugetlb_zero_partial_page()
KVM: guest_memfd: Make guest mem use guest mem inodes instead of
anonymous inodes
KVM: guest_memfd: hugetlb: initialization and cleanup
KVM: guest_memfd: hugetlb: allocate and truncate from hugetlb
KVM: guest_memfd: Add page alignment check for hugetlb guest_memfd
KVM: selftests: Add basic selftests for hugetlb-backed guest_memfd
KVM: selftests: Support various types of backing sources for private
memory
KVM: selftests: Update test for various private memory backing source
types
KVM: selftests: Add private_mem_conversions_test.sh
KVM: selftests: Test that guest_memfd usage is reported via hugetlb
mm: hugetlb: Expose vmemmap optimization functions
mm: hugetlb: Expose HugeTLB functions for promoting/demoting pages
mm: hugetlb: Add functions to add/move/remove from hugetlb lists
KVM: guest_memfd: Track faultability within a struct kvm_gmem_private
KVM: guest_memfd: Allow mmapping guest_memfd files
KVM: guest_memfd: Use vm_type to determine default faultability
KVM: Handle conversions in the SET_MEMORY_ATTRIBUTES ioctl
KVM: guest_memfd: Handle folio preparation for guest_memfd mmap
KVM: selftests: Allow vm_set_memory_attributes to be used without
asserting return value of 0
KVM: selftests: Test using guest_memfd memory from userspace
KVM: selftests: Test guest_memfd memory sharing between guest and host
KVM: selftests: Add notes in private_mem_kvm_exits_test for mmap-able
guest_memfd
KVM: selftests: Test that pinned pages block KVM from setting memory
attributes to PRIVATE
KVM: selftests: Refactor vm_mem_add to be more flexible
KVM: selftests: Add helper to perform madvise by memslots
KVM: selftests: Update private_mem_conversions_test for mmap()able
guest_memfd
Vishal Annapurve (2):
KVM: guest_memfd: Split HugeTLB pages for guest_memfd use
KVM: guest_memfd: Dynamically split/reconstruct HugeTLB page
fs/hugetlbfs/inode.c | 35 +-
include/linux/hugetlb.h | 54 +-
include/linux/kvm_host.h | 1 +
include/linux/mempolicy.h | 2 +
include/linux/mm.h | 1 +
include/uapi/linux/kvm.h | 26 +
include/uapi/linux/magic.h | 1 +
mm/hugetlb.c | 346 ++--
mm/hugetlb_vmemmap.h | 11 -
mm/mempolicy.c | 36 +-
mm/truncate.c | 26 +-
tools/include/linux/kernel.h | 4 +-
tools/testing/selftests/kvm/Makefile | 3 +
.../kvm/guest_memfd_hugetlb_reporting_test.c | 222 +++
.../selftests/kvm/guest_memfd_pin_test.c | 104 ++
.../selftests/kvm/guest_memfd_sharing_test.c | 160 ++
.../testing/selftests/kvm/guest_memfd_test.c | 238 ++-
.../testing/selftests/kvm/include/kvm_util.h | 45 +-
.../testing/selftests/kvm/include/test_util.h | 18 +
tools/testing/selftests/kvm/lib/kvm_util.c | 443 +++--
tools/testing/selftests/kvm/lib/test_util.c | 99 ++
.../kvm/x86_64/private_mem_conversions_test.c | 158 +-
.../x86_64/private_mem_conversions_test.sh | 91 +
.../kvm/x86_64/private_mem_kvm_exits_test.c | 11 +-
virt/kvm/guest_memfd.c | 1563 ++++++++++++++++-
virt/kvm/kvm_main.c | 17 +
virt/kvm/kvm_mm.h | 16 +
27 files changed, 3288 insertions(+), 443 deletions(-)
create mode 100644 tools/testing/selftests/kvm/guest_memfd_hugetlb_reporting_test.c
create mode 100644 tools/testing/selftests/kvm/guest_memfd_pin_test.c
create mode 100644 tools/testing/selftests/kvm/guest_memfd_sharing_test.c
create mode 100755 tools/testing/selftests/kvm/x86_64/private_mem_conversions_test.sh
--
2.46.0.598.g6f2099f65c-goog
This patchset fixes a bug where bnxt driver was failing to report that
an ntuple rule is redirecting to an RSS context. First commit is the
fix, then second commit extends selftests to detect if other/new drivers
are compliant with ntuple/rss_ctx API.
=== Changelog ===
Changes from v2:
* Rebase to net instead of net-next
* Make regex work with ethtool output changes
Changes from v1:
* Add selftest in patch 2
Daniel Xu (2):
bnxt_en: ethtool: Supply ntuple rss context action
selftests: drv-net: rss_ctx: Add test for ntuple rule
drivers/net/ethernet/broadcom/bnxt/bnxt_ethtool.c | 8 ++++++--
tools/testing/selftests/drivers/net/hw/rss_ctx.py | 12 +++++++++++-
2 files changed, 17 insertions(+), 3 deletions(-)
--
2.46.0