The patch below does not apply to the 4.14-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 59bf3557cf2f8a469a554aea1e3d2c8e72a579f7 Mon Sep 17 00:00:00 2001
From: David Stevens <stevensd(a)chromium.org>
Date: Sun, 10 Apr 2022 09:35:33 +0800
Subject: [PATCH] iommu/vt-d: Calculate mask for non-aligned flushes
Calculate the appropriate mask for non-size-aligned page selective
invalidation. Since psi uses the mask value to mask out the lower order
bits of the target address, properly flushing the iotlb requires using a
mask value such that [pfn, pfn+pages) all lie within the flushed
size-aligned region. This is not normally an issue because iova.c
always allocates iovas that are aligned to their size. However, iovas
which come from other sources (e.g. userspace via VFIO) may not be
aligned.
To properly flush the IOTLB, both the start and end pfns need to be
equal after applying the mask. That means that the most efficient mask
to use is the index of the lowest bit that is equal where all higher
bits are also equal. For example, if pfn=0x17f and pages=3, then
end_pfn=0x181, so the smallest mask we can use is 8. Any differences
above the highest bit of pages are due to carrying, so by xnor'ing pfn
and end_pfn and then masking out the lower order bits based on pages, we
get 0xffffff00, where the first set bit is the mask we want to use.
Fixes: 6fe1010d6d9c ("vfio/type1: DMA unmap chunking")
Cc: stable(a)vger.kernel.org
Signed-off-by: David Stevens <stevensd(a)chromium.org>
Reviewed-by: Kevin Tian <kevin.tian(a)intel.com>
Link: https://lore.kernel.org/r/20220401022430.1262215-1-stevensd@google.com
Signed-off-by: Lu Baolu <baolu.lu(a)linux.intel.com>
Link: https://lore.kernel.org/r/20220410013533.3959168-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel(a)suse.de>
diff --git a/drivers/iommu/intel/iommu.c b/drivers/iommu/intel/iommu.c
index df5c62ecf942..0ea47e17b379 100644
--- a/drivers/iommu/intel/iommu.c
+++ b/drivers/iommu/intel/iommu.c
@@ -1588,7 +1588,8 @@ static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
unsigned long pfn, unsigned int pages,
int ih, int map)
{
- unsigned int mask = ilog2(__roundup_pow_of_two(pages));
+ unsigned int aligned_pages = __roundup_pow_of_two(pages);
+ unsigned int mask = ilog2(aligned_pages);
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
u16 did = domain->iommu_did[iommu->seq_id];
@@ -1600,10 +1601,30 @@ static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
if (domain_use_first_level(domain)) {
qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih);
} else {
+ unsigned long bitmask = aligned_pages - 1;
+
+ /*
+ * PSI masks the low order bits of the base address. If the
+ * address isn't aligned to the mask, then compute a mask value
+ * needed to ensure the target range is flushed.
+ */
+ if (unlikely(bitmask & pfn)) {
+ unsigned long end_pfn = pfn + pages - 1, shared_bits;
+
+ /*
+ * Since end_pfn <= pfn + bitmask, the only way bits
+ * higher than bitmask can differ in pfn and end_pfn is
+ * by carrying. This means after masking out bitmask,
+ * high bits starting with the first set bit in
+ * shared_bits are all equal in both pfn and end_pfn.
+ */
+ shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
+ mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
+ }
+
/*
* Fallback to domain selective flush if no PSI support or
- * the size is too big. PSI requires page size to be 2 ^ x,
- * and the base address is naturally aligned to the size.
+ * the size is too big.
*/
if (!cap_pgsel_inv(iommu->cap) ||
mask > cap_max_amask_val(iommu->cap))
The patch below does not apply to the 4.19-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 59bf3557cf2f8a469a554aea1e3d2c8e72a579f7 Mon Sep 17 00:00:00 2001
From: David Stevens <stevensd(a)chromium.org>
Date: Sun, 10 Apr 2022 09:35:33 +0800
Subject: [PATCH] iommu/vt-d: Calculate mask for non-aligned flushes
Calculate the appropriate mask for non-size-aligned page selective
invalidation. Since psi uses the mask value to mask out the lower order
bits of the target address, properly flushing the iotlb requires using a
mask value such that [pfn, pfn+pages) all lie within the flushed
size-aligned region. This is not normally an issue because iova.c
always allocates iovas that are aligned to their size. However, iovas
which come from other sources (e.g. userspace via VFIO) may not be
aligned.
To properly flush the IOTLB, both the start and end pfns need to be
equal after applying the mask. That means that the most efficient mask
to use is the index of the lowest bit that is equal where all higher
bits are also equal. For example, if pfn=0x17f and pages=3, then
end_pfn=0x181, so the smallest mask we can use is 8. Any differences
above the highest bit of pages are due to carrying, so by xnor'ing pfn
and end_pfn and then masking out the lower order bits based on pages, we
get 0xffffff00, where the first set bit is the mask we want to use.
Fixes: 6fe1010d6d9c ("vfio/type1: DMA unmap chunking")
Cc: stable(a)vger.kernel.org
Signed-off-by: David Stevens <stevensd(a)chromium.org>
Reviewed-by: Kevin Tian <kevin.tian(a)intel.com>
Link: https://lore.kernel.org/r/20220401022430.1262215-1-stevensd@google.com
Signed-off-by: Lu Baolu <baolu.lu(a)linux.intel.com>
Link: https://lore.kernel.org/r/20220410013533.3959168-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel(a)suse.de>
diff --git a/drivers/iommu/intel/iommu.c b/drivers/iommu/intel/iommu.c
index df5c62ecf942..0ea47e17b379 100644
--- a/drivers/iommu/intel/iommu.c
+++ b/drivers/iommu/intel/iommu.c
@@ -1588,7 +1588,8 @@ static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
unsigned long pfn, unsigned int pages,
int ih, int map)
{
- unsigned int mask = ilog2(__roundup_pow_of_two(pages));
+ unsigned int aligned_pages = __roundup_pow_of_two(pages);
+ unsigned int mask = ilog2(aligned_pages);
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
u16 did = domain->iommu_did[iommu->seq_id];
@@ -1600,10 +1601,30 @@ static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
if (domain_use_first_level(domain)) {
qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih);
} else {
+ unsigned long bitmask = aligned_pages - 1;
+
+ /*
+ * PSI masks the low order bits of the base address. If the
+ * address isn't aligned to the mask, then compute a mask value
+ * needed to ensure the target range is flushed.
+ */
+ if (unlikely(bitmask & pfn)) {
+ unsigned long end_pfn = pfn + pages - 1, shared_bits;
+
+ /*
+ * Since end_pfn <= pfn + bitmask, the only way bits
+ * higher than bitmask can differ in pfn and end_pfn is
+ * by carrying. This means after masking out bitmask,
+ * high bits starting with the first set bit in
+ * shared_bits are all equal in both pfn and end_pfn.
+ */
+ shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
+ mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
+ }
+
/*
* Fallback to domain selective flush if no PSI support or
- * the size is too big. PSI requires page size to be 2 ^ x,
- * and the base address is naturally aligned to the size.
+ * the size is too big.
*/
if (!cap_pgsel_inv(iommu->cap) ||
mask > cap_max_amask_val(iommu->cap))
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 59bf3557cf2f8a469a554aea1e3d2c8e72a579f7 Mon Sep 17 00:00:00 2001
From: David Stevens <stevensd(a)chromium.org>
Date: Sun, 10 Apr 2022 09:35:33 +0800
Subject: [PATCH] iommu/vt-d: Calculate mask for non-aligned flushes
Calculate the appropriate mask for non-size-aligned page selective
invalidation. Since psi uses the mask value to mask out the lower order
bits of the target address, properly flushing the iotlb requires using a
mask value such that [pfn, pfn+pages) all lie within the flushed
size-aligned region. This is not normally an issue because iova.c
always allocates iovas that are aligned to their size. However, iovas
which come from other sources (e.g. userspace via VFIO) may not be
aligned.
To properly flush the IOTLB, both the start and end pfns need to be
equal after applying the mask. That means that the most efficient mask
to use is the index of the lowest bit that is equal where all higher
bits are also equal. For example, if pfn=0x17f and pages=3, then
end_pfn=0x181, so the smallest mask we can use is 8. Any differences
above the highest bit of pages are due to carrying, so by xnor'ing pfn
and end_pfn and then masking out the lower order bits based on pages, we
get 0xffffff00, where the first set bit is the mask we want to use.
Fixes: 6fe1010d6d9c ("vfio/type1: DMA unmap chunking")
Cc: stable(a)vger.kernel.org
Signed-off-by: David Stevens <stevensd(a)chromium.org>
Reviewed-by: Kevin Tian <kevin.tian(a)intel.com>
Link: https://lore.kernel.org/r/20220401022430.1262215-1-stevensd@google.com
Signed-off-by: Lu Baolu <baolu.lu(a)linux.intel.com>
Link: https://lore.kernel.org/r/20220410013533.3959168-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel(a)suse.de>
diff --git a/drivers/iommu/intel/iommu.c b/drivers/iommu/intel/iommu.c
index df5c62ecf942..0ea47e17b379 100644
--- a/drivers/iommu/intel/iommu.c
+++ b/drivers/iommu/intel/iommu.c
@@ -1588,7 +1588,8 @@ static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
unsigned long pfn, unsigned int pages,
int ih, int map)
{
- unsigned int mask = ilog2(__roundup_pow_of_two(pages));
+ unsigned int aligned_pages = __roundup_pow_of_two(pages);
+ unsigned int mask = ilog2(aligned_pages);
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
u16 did = domain->iommu_did[iommu->seq_id];
@@ -1600,10 +1601,30 @@ static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
if (domain_use_first_level(domain)) {
qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih);
} else {
+ unsigned long bitmask = aligned_pages - 1;
+
+ /*
+ * PSI masks the low order bits of the base address. If the
+ * address isn't aligned to the mask, then compute a mask value
+ * needed to ensure the target range is flushed.
+ */
+ if (unlikely(bitmask & pfn)) {
+ unsigned long end_pfn = pfn + pages - 1, shared_bits;
+
+ /*
+ * Since end_pfn <= pfn + bitmask, the only way bits
+ * higher than bitmask can differ in pfn and end_pfn is
+ * by carrying. This means after masking out bitmask,
+ * high bits starting with the first set bit in
+ * shared_bits are all equal in both pfn and end_pfn.
+ */
+ shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
+ mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
+ }
+
/*
* Fallback to domain selective flush if no PSI support or
- * the size is too big. PSI requires page size to be 2 ^ x,
- * and the base address is naturally aligned to the size.
+ * the size is too big.
*/
if (!cap_pgsel_inv(iommu->cap) ||
mask > cap_max_amask_val(iommu->cap))
The patch below does not apply to the 5.17-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From ba3a6120a4e7efc13d19fe43eb6c5caf1da05b72 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:43 +0000
Subject: [PATCH] KVM: x86/mmu: Use atomic XCHG to write TDP MMU SPTEs with
volatile bits
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897cb ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable(a)vger.kernel.org
Cc: Ben Gardon <bgardon(a)google.com>
Cc: David Matlack <dmatlack(a)google.com>
Cc: Venkatesh Srinivas <venkateshs(a)google.com>
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-4-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h
index b1eaf6ec0e0b..f0af385c56e0 100644
--- a/arch/x86/kvm/mmu/tdp_iter.h
+++ b/arch/x86/kvm/mmu/tdp_iter.h
@@ -6,6 +6,7 @@
#include <linux/kvm_host.h>
#include "mmu.h"
+#include "spte.h"
/*
* TDP MMU SPTEs are RCU protected to allow paging structures (non-leaf SPTEs)
@@ -17,9 +18,38 @@ static inline u64 kvm_tdp_mmu_read_spte(tdp_ptep_t sptep)
{
return READ_ONCE(*rcu_dereference(sptep));
}
-static inline void kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 val)
+
+static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte)
+{
+ return xchg(rcu_dereference(sptep), new_spte);
+}
+
+static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte)
+{
+ WRITE_ONCE(*rcu_dereference(sptep), new_spte);
+}
+
+static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte,
+ u64 new_spte, int level)
{
- WRITE_ONCE(*rcu_dereference(sptep), val);
+ /*
+ * Atomically write the SPTE if it is a shadow-present, leaf SPTE with
+ * volatile bits, i.e. has bits that can be set outside of mmu_lock.
+ * The Writable bit can be set by KVM's fast page fault handler, and
+ * Accessed and Dirty bits can be set by the CPU.
+ *
+ * Note, non-leaf SPTEs do have Accessed bits and those bits are
+ * technically volatile, but KVM doesn't consume the Accessed bit of
+ * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This
+ * logic needs to be reassessed if KVM were to use non-leaf Accessed
+ * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs.
+ */
+ if (is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) &&
+ spte_has_volatile_bits(old_spte))
+ return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte);
+
+ __kvm_tdp_mmu_write_spte(sptep, new_spte);
+ return old_spte;
}
/*
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index edc68538819b..922b06bf4b94 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -426,9 +426,9 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
tdp_mmu_unlink_sp(kvm, sp, shared);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
- u64 *sptep = rcu_dereference(pt) + i;
+ tdp_ptep_t sptep = pt + i;
gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
- u64 old_child_spte;
+ u64 old_spte;
if (shared) {
/*
@@ -440,8 +440,8 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* value to the removed SPTE value.
*/
for (;;) {
- old_child_spte = xchg(sptep, REMOVED_SPTE);
- if (!is_removed_spte(old_child_spte))
+ old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
+ if (!is_removed_spte(old_spte))
break;
cpu_relax();
}
@@ -455,23 +455,43 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* are guarded by the memslots generation, not by being
* unreachable.
*/
- old_child_spte = READ_ONCE(*sptep);
- if (!is_shadow_present_pte(old_child_spte))
+ old_spte = kvm_tdp_mmu_read_spte(sptep);
+ if (!is_shadow_present_pte(old_spte))
continue;
/*
- * Marking the SPTE as a removed SPTE is not
- * strictly necessary here as the MMU lock will
- * stop other threads from concurrently modifying
- * this SPTE. Using the removed SPTE value keeps
- * the two branches consistent and simplifies
- * the function.
+ * Use the common helper instead of a raw WRITE_ONCE as
+ * the SPTE needs to be updated atomically if it can be
+ * modified by a different vCPU outside of mmu_lock.
+ * Even though the parent SPTE is !PRESENT, the TLB
+ * hasn't yet been flushed, and both Intel and AMD
+ * document that A/D assists can use upper-level PxE
+ * entries that are cached in the TLB, i.e. the CPU can
+ * still access the page and mark it dirty.
+ *
+ * No retry is needed in the atomic update path as the
+ * sole concern is dropping a Dirty bit, i.e. no other
+ * task can zap/remove the SPTE as mmu_lock is held for
+ * write. Marking the SPTE as a removed SPTE is not
+ * strictly necessary for the same reason, but using
+ * the remove SPTE value keeps the shared/exclusive
+ * paths consistent and allows the handle_changed_spte()
+ * call below to hardcode the new value to REMOVED_SPTE.
+ *
+ * Note, even though dropping a Dirty bit is the only
+ * scenario where a non-atomic update could result in a
+ * functional bug, simply checking the Dirty bit isn't
+ * sufficient as a fast page fault could read the upper
+ * level SPTE before it is zapped, and then make this
+ * target SPTE writable, resume the guest, and set the
+ * Dirty bit between reading the SPTE above and writing
+ * it here.
*/
- WRITE_ONCE(*sptep, REMOVED_SPTE);
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
+ REMOVED_SPTE, level);
}
handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
- old_child_spte, REMOVED_SPTE, level,
- shared);
+ old_spte, REMOVED_SPTE, level, shared);
}
call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
@@ -667,14 +687,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
KVM_PAGES_PER_HPAGE(iter->level));
/*
- * No other thread can overwrite the removed SPTE as they
- * must either wait on the MMU lock or use
- * tdp_mmu_set_spte_atomic which will not overwrite the
- * special removed SPTE value. No bookkeeping is needed
- * here since the SPTE is going from non-present
- * to non-present.
+ * No other thread can overwrite the removed SPTE as they must either
+ * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
+ * overwrite the special removed SPTE value. No bookkeeping is needed
+ * here since the SPTE is going from non-present to non-present. Use
+ * the raw write helper to avoid an unnecessary check on volatile bits.
*/
- kvm_tdp_mmu_write_spte(iter->sptep, 0);
+ __kvm_tdp_mmu_write_spte(iter->sptep, 0);
return 0;
}
@@ -699,10 +718,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
* unless performing certain dirty logging operations.
* Leaving record_dirty_log unset in that case prevents page
* writes from being double counted.
+ *
+ * Returns the old SPTE value, which _may_ be different than @old_spte if the
+ * SPTE had voldatile bits.
*/
-static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
- u64 old_spte, u64 new_spte, gfn_t gfn, int level,
- bool record_acc_track, bool record_dirty_log)
+static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
+ u64 old_spte, u64 new_spte, gfn_t gfn, int level,
+ bool record_acc_track, bool record_dirty_log)
{
lockdep_assert_held_write(&kvm->mmu_lock);
@@ -715,7 +737,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
*/
WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
- kvm_tdp_mmu_write_spte(sptep, new_spte);
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
@@ -724,6 +746,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
if (record_dirty_log)
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
new_spte, level);
+ return old_spte;
}
static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
@@ -732,9 +755,10 @@ static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
{
WARN_ON_ONCE(iter->yielded);
- __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, iter->old_spte,
- new_spte, iter->gfn, iter->level,
- record_acc_track, record_dirty_log);
+ iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
+ iter->old_spte, new_spte,
+ iter->gfn, iter->level,
+ record_acc_track, record_dirty_log);
}
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
The patch below does not apply to the 5.15-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From ba3a6120a4e7efc13d19fe43eb6c5caf1da05b72 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:43 +0000
Subject: [PATCH] KVM: x86/mmu: Use atomic XCHG to write TDP MMU SPTEs with
volatile bits
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897cb ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable(a)vger.kernel.org
Cc: Ben Gardon <bgardon(a)google.com>
Cc: David Matlack <dmatlack(a)google.com>
Cc: Venkatesh Srinivas <venkateshs(a)google.com>
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-4-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h
index b1eaf6ec0e0b..f0af385c56e0 100644
--- a/arch/x86/kvm/mmu/tdp_iter.h
+++ b/arch/x86/kvm/mmu/tdp_iter.h
@@ -6,6 +6,7 @@
#include <linux/kvm_host.h>
#include "mmu.h"
+#include "spte.h"
/*
* TDP MMU SPTEs are RCU protected to allow paging structures (non-leaf SPTEs)
@@ -17,9 +18,38 @@ static inline u64 kvm_tdp_mmu_read_spte(tdp_ptep_t sptep)
{
return READ_ONCE(*rcu_dereference(sptep));
}
-static inline void kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 val)
+
+static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte)
+{
+ return xchg(rcu_dereference(sptep), new_spte);
+}
+
+static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte)
+{
+ WRITE_ONCE(*rcu_dereference(sptep), new_spte);
+}
+
+static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte,
+ u64 new_spte, int level)
{
- WRITE_ONCE(*rcu_dereference(sptep), val);
+ /*
+ * Atomically write the SPTE if it is a shadow-present, leaf SPTE with
+ * volatile bits, i.e. has bits that can be set outside of mmu_lock.
+ * The Writable bit can be set by KVM's fast page fault handler, and
+ * Accessed and Dirty bits can be set by the CPU.
+ *
+ * Note, non-leaf SPTEs do have Accessed bits and those bits are
+ * technically volatile, but KVM doesn't consume the Accessed bit of
+ * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This
+ * logic needs to be reassessed if KVM were to use non-leaf Accessed
+ * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs.
+ */
+ if (is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) &&
+ spte_has_volatile_bits(old_spte))
+ return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte);
+
+ __kvm_tdp_mmu_write_spte(sptep, new_spte);
+ return old_spte;
}
/*
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index edc68538819b..922b06bf4b94 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -426,9 +426,9 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
tdp_mmu_unlink_sp(kvm, sp, shared);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
- u64 *sptep = rcu_dereference(pt) + i;
+ tdp_ptep_t sptep = pt + i;
gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
- u64 old_child_spte;
+ u64 old_spte;
if (shared) {
/*
@@ -440,8 +440,8 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* value to the removed SPTE value.
*/
for (;;) {
- old_child_spte = xchg(sptep, REMOVED_SPTE);
- if (!is_removed_spte(old_child_spte))
+ old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
+ if (!is_removed_spte(old_spte))
break;
cpu_relax();
}
@@ -455,23 +455,43 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* are guarded by the memslots generation, not by being
* unreachable.
*/
- old_child_spte = READ_ONCE(*sptep);
- if (!is_shadow_present_pte(old_child_spte))
+ old_spte = kvm_tdp_mmu_read_spte(sptep);
+ if (!is_shadow_present_pte(old_spte))
continue;
/*
- * Marking the SPTE as a removed SPTE is not
- * strictly necessary here as the MMU lock will
- * stop other threads from concurrently modifying
- * this SPTE. Using the removed SPTE value keeps
- * the two branches consistent and simplifies
- * the function.
+ * Use the common helper instead of a raw WRITE_ONCE as
+ * the SPTE needs to be updated atomically if it can be
+ * modified by a different vCPU outside of mmu_lock.
+ * Even though the parent SPTE is !PRESENT, the TLB
+ * hasn't yet been flushed, and both Intel and AMD
+ * document that A/D assists can use upper-level PxE
+ * entries that are cached in the TLB, i.e. the CPU can
+ * still access the page and mark it dirty.
+ *
+ * No retry is needed in the atomic update path as the
+ * sole concern is dropping a Dirty bit, i.e. no other
+ * task can zap/remove the SPTE as mmu_lock is held for
+ * write. Marking the SPTE as a removed SPTE is not
+ * strictly necessary for the same reason, but using
+ * the remove SPTE value keeps the shared/exclusive
+ * paths consistent and allows the handle_changed_spte()
+ * call below to hardcode the new value to REMOVED_SPTE.
+ *
+ * Note, even though dropping a Dirty bit is the only
+ * scenario where a non-atomic update could result in a
+ * functional bug, simply checking the Dirty bit isn't
+ * sufficient as a fast page fault could read the upper
+ * level SPTE before it is zapped, and then make this
+ * target SPTE writable, resume the guest, and set the
+ * Dirty bit between reading the SPTE above and writing
+ * it here.
*/
- WRITE_ONCE(*sptep, REMOVED_SPTE);
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
+ REMOVED_SPTE, level);
}
handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
- old_child_spte, REMOVED_SPTE, level,
- shared);
+ old_spte, REMOVED_SPTE, level, shared);
}
call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
@@ -667,14 +687,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
KVM_PAGES_PER_HPAGE(iter->level));
/*
- * No other thread can overwrite the removed SPTE as they
- * must either wait on the MMU lock or use
- * tdp_mmu_set_spte_atomic which will not overwrite the
- * special removed SPTE value. No bookkeeping is needed
- * here since the SPTE is going from non-present
- * to non-present.
+ * No other thread can overwrite the removed SPTE as they must either
+ * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
+ * overwrite the special removed SPTE value. No bookkeeping is needed
+ * here since the SPTE is going from non-present to non-present. Use
+ * the raw write helper to avoid an unnecessary check on volatile bits.
*/
- kvm_tdp_mmu_write_spte(iter->sptep, 0);
+ __kvm_tdp_mmu_write_spte(iter->sptep, 0);
return 0;
}
@@ -699,10 +718,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
* unless performing certain dirty logging operations.
* Leaving record_dirty_log unset in that case prevents page
* writes from being double counted.
+ *
+ * Returns the old SPTE value, which _may_ be different than @old_spte if the
+ * SPTE had voldatile bits.
*/
-static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
- u64 old_spte, u64 new_spte, gfn_t gfn, int level,
- bool record_acc_track, bool record_dirty_log)
+static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
+ u64 old_spte, u64 new_spte, gfn_t gfn, int level,
+ bool record_acc_track, bool record_dirty_log)
{
lockdep_assert_held_write(&kvm->mmu_lock);
@@ -715,7 +737,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
*/
WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
- kvm_tdp_mmu_write_spte(sptep, new_spte);
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
@@ -724,6 +746,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
if (record_dirty_log)
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
new_spte, level);
+ return old_spte;
}
static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
@@ -732,9 +755,10 @@ static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
{
WARN_ON_ONCE(iter->yielded);
- __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, iter->old_spte,
- new_spte, iter->gfn, iter->level,
- record_acc_track, record_dirty_log);
+ iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
+ iter->old_spte, new_spte,
+ iter->gfn, iter->level,
+ record_acc_track, record_dirty_log);
}
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
The patch below does not apply to the 5.10-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From ba3a6120a4e7efc13d19fe43eb6c5caf1da05b72 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:43 +0000
Subject: [PATCH] KVM: x86/mmu: Use atomic XCHG to write TDP MMU SPTEs with
volatile bits
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897cb ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable(a)vger.kernel.org
Cc: Ben Gardon <bgardon(a)google.com>
Cc: David Matlack <dmatlack(a)google.com>
Cc: Venkatesh Srinivas <venkateshs(a)google.com>
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-4-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h
index b1eaf6ec0e0b..f0af385c56e0 100644
--- a/arch/x86/kvm/mmu/tdp_iter.h
+++ b/arch/x86/kvm/mmu/tdp_iter.h
@@ -6,6 +6,7 @@
#include <linux/kvm_host.h>
#include "mmu.h"
+#include "spte.h"
/*
* TDP MMU SPTEs are RCU protected to allow paging structures (non-leaf SPTEs)
@@ -17,9 +18,38 @@ static inline u64 kvm_tdp_mmu_read_spte(tdp_ptep_t sptep)
{
return READ_ONCE(*rcu_dereference(sptep));
}
-static inline void kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 val)
+
+static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte)
+{
+ return xchg(rcu_dereference(sptep), new_spte);
+}
+
+static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte)
+{
+ WRITE_ONCE(*rcu_dereference(sptep), new_spte);
+}
+
+static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte,
+ u64 new_spte, int level)
{
- WRITE_ONCE(*rcu_dereference(sptep), val);
+ /*
+ * Atomically write the SPTE if it is a shadow-present, leaf SPTE with
+ * volatile bits, i.e. has bits that can be set outside of mmu_lock.
+ * The Writable bit can be set by KVM's fast page fault handler, and
+ * Accessed and Dirty bits can be set by the CPU.
+ *
+ * Note, non-leaf SPTEs do have Accessed bits and those bits are
+ * technically volatile, but KVM doesn't consume the Accessed bit of
+ * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This
+ * logic needs to be reassessed if KVM were to use non-leaf Accessed
+ * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs.
+ */
+ if (is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) &&
+ spte_has_volatile_bits(old_spte))
+ return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte);
+
+ __kvm_tdp_mmu_write_spte(sptep, new_spte);
+ return old_spte;
}
/*
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index edc68538819b..922b06bf4b94 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -426,9 +426,9 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
tdp_mmu_unlink_sp(kvm, sp, shared);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
- u64 *sptep = rcu_dereference(pt) + i;
+ tdp_ptep_t sptep = pt + i;
gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
- u64 old_child_spte;
+ u64 old_spte;
if (shared) {
/*
@@ -440,8 +440,8 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* value to the removed SPTE value.
*/
for (;;) {
- old_child_spte = xchg(sptep, REMOVED_SPTE);
- if (!is_removed_spte(old_child_spte))
+ old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
+ if (!is_removed_spte(old_spte))
break;
cpu_relax();
}
@@ -455,23 +455,43 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* are guarded by the memslots generation, not by being
* unreachable.
*/
- old_child_spte = READ_ONCE(*sptep);
- if (!is_shadow_present_pte(old_child_spte))
+ old_spte = kvm_tdp_mmu_read_spte(sptep);
+ if (!is_shadow_present_pte(old_spte))
continue;
/*
- * Marking the SPTE as a removed SPTE is not
- * strictly necessary here as the MMU lock will
- * stop other threads from concurrently modifying
- * this SPTE. Using the removed SPTE value keeps
- * the two branches consistent and simplifies
- * the function.
+ * Use the common helper instead of a raw WRITE_ONCE as
+ * the SPTE needs to be updated atomically if it can be
+ * modified by a different vCPU outside of mmu_lock.
+ * Even though the parent SPTE is !PRESENT, the TLB
+ * hasn't yet been flushed, and both Intel and AMD
+ * document that A/D assists can use upper-level PxE
+ * entries that are cached in the TLB, i.e. the CPU can
+ * still access the page and mark it dirty.
+ *
+ * No retry is needed in the atomic update path as the
+ * sole concern is dropping a Dirty bit, i.e. no other
+ * task can zap/remove the SPTE as mmu_lock is held for
+ * write. Marking the SPTE as a removed SPTE is not
+ * strictly necessary for the same reason, but using
+ * the remove SPTE value keeps the shared/exclusive
+ * paths consistent and allows the handle_changed_spte()
+ * call below to hardcode the new value to REMOVED_SPTE.
+ *
+ * Note, even though dropping a Dirty bit is the only
+ * scenario where a non-atomic update could result in a
+ * functional bug, simply checking the Dirty bit isn't
+ * sufficient as a fast page fault could read the upper
+ * level SPTE before it is zapped, and then make this
+ * target SPTE writable, resume the guest, and set the
+ * Dirty bit between reading the SPTE above and writing
+ * it here.
*/
- WRITE_ONCE(*sptep, REMOVED_SPTE);
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
+ REMOVED_SPTE, level);
}
handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
- old_child_spte, REMOVED_SPTE, level,
- shared);
+ old_spte, REMOVED_SPTE, level, shared);
}
call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
@@ -667,14 +687,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
KVM_PAGES_PER_HPAGE(iter->level));
/*
- * No other thread can overwrite the removed SPTE as they
- * must either wait on the MMU lock or use
- * tdp_mmu_set_spte_atomic which will not overwrite the
- * special removed SPTE value. No bookkeeping is needed
- * here since the SPTE is going from non-present
- * to non-present.
+ * No other thread can overwrite the removed SPTE as they must either
+ * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
+ * overwrite the special removed SPTE value. No bookkeeping is needed
+ * here since the SPTE is going from non-present to non-present. Use
+ * the raw write helper to avoid an unnecessary check on volatile bits.
*/
- kvm_tdp_mmu_write_spte(iter->sptep, 0);
+ __kvm_tdp_mmu_write_spte(iter->sptep, 0);
return 0;
}
@@ -699,10 +718,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
* unless performing certain dirty logging operations.
* Leaving record_dirty_log unset in that case prevents page
* writes from being double counted.
+ *
+ * Returns the old SPTE value, which _may_ be different than @old_spte if the
+ * SPTE had voldatile bits.
*/
-static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
- u64 old_spte, u64 new_spte, gfn_t gfn, int level,
- bool record_acc_track, bool record_dirty_log)
+static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
+ u64 old_spte, u64 new_spte, gfn_t gfn, int level,
+ bool record_acc_track, bool record_dirty_log)
{
lockdep_assert_held_write(&kvm->mmu_lock);
@@ -715,7 +737,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
*/
WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
- kvm_tdp_mmu_write_spte(sptep, new_spte);
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
@@ -724,6 +746,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
if (record_dirty_log)
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
new_spte, level);
+ return old_spte;
}
static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
@@ -732,9 +755,10 @@ static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
{
WARN_ON_ONCE(iter->yielded);
- __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, iter->old_spte,
- new_spte, iter->gfn, iter->level,
- record_acc_track, record_dirty_log);
+ iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
+ iter->old_spte, new_spte,
+ iter->gfn, iter->level,
+ record_acc_track, record_dirty_log);
}
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
The patch below does not apply to the 4.9-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 54eb3ef56f36827aad90915df33387d4c2b5df5a Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:42 +0000
Subject: [PATCH] KVM: x86/mmu: Move shadow-present check out of
spte_has_volatile_bits()
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 48dcb6a782f4..311e4e1d7870 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -473,32 +473,6 @@ static u64 __get_spte_lockless(u64 *sptep)
}
#endif
-static bool spte_has_volatile_bits(u64 spte)
-{
- if (!is_shadow_present_pte(spte))
- return false;
-
- /*
- * Always atomically update spte if it can be updated
- * out of mmu-lock, it can ensure dirty bit is not lost,
- * also, it can help us to get a stable is_writable_pte()
- * to ensure tlb flush is not missed.
- */
- if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
- return true;
-
- if (is_access_track_spte(spte))
- return true;
-
- if (spte_ad_enabled(spte)) {
- if (!(spte & shadow_accessed_mask) ||
- (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
- return true;
- }
-
- return false;
-}
-
/* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present
@@ -593,7 +567,8 @@ static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level;
- if (!spte_has_volatile_bits(old_spte))
+ if (!is_shadow_present_pte(old_spte) ||
+ !spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, 0ull);
else
old_spte = __update_clear_spte_slow(sptep, 0ull);
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
index 4739b53c9734..e5c0b6db6f2c 100644
--- a/arch/x86/kvm/mmu/spte.c
+++ b/arch/x86/kvm/mmu/spte.c
@@ -90,6 +90,34 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
E820_TYPE_RAM);
}
+/*
+ * Returns true if the SPTE has bits that may be set without holding mmu_lock.
+ * The caller is responsible for checking if the SPTE is shadow-present, and
+ * for determining whether or not the caller cares about non-leaf SPTEs.
+ */
+bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomically update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
+ return true;
+
+ if (is_access_track_spte(spte))
+ return true;
+
+ if (spte_ad_enabled(spte)) {
+ if (!(spte & shadow_accessed_mask) ||
+ (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
+ return true;
+ }
+
+ return false;
+}
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index c571784cb567..80ab0f5cff01 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -404,6 +404,8 @@ static inline u64 get_mmio_spte_generation(u64 spte)
return gen;
}
+bool spte_has_volatile_bits(u64 spte);
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
The patch below does not apply to the 4.14-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 54eb3ef56f36827aad90915df33387d4c2b5df5a Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:42 +0000
Subject: [PATCH] KVM: x86/mmu: Move shadow-present check out of
spte_has_volatile_bits()
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 48dcb6a782f4..311e4e1d7870 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -473,32 +473,6 @@ static u64 __get_spte_lockless(u64 *sptep)
}
#endif
-static bool spte_has_volatile_bits(u64 spte)
-{
- if (!is_shadow_present_pte(spte))
- return false;
-
- /*
- * Always atomically update spte if it can be updated
- * out of mmu-lock, it can ensure dirty bit is not lost,
- * also, it can help us to get a stable is_writable_pte()
- * to ensure tlb flush is not missed.
- */
- if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
- return true;
-
- if (is_access_track_spte(spte))
- return true;
-
- if (spte_ad_enabled(spte)) {
- if (!(spte & shadow_accessed_mask) ||
- (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
- return true;
- }
-
- return false;
-}
-
/* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present
@@ -593,7 +567,8 @@ static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level;
- if (!spte_has_volatile_bits(old_spte))
+ if (!is_shadow_present_pte(old_spte) ||
+ !spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, 0ull);
else
old_spte = __update_clear_spte_slow(sptep, 0ull);
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
index 4739b53c9734..e5c0b6db6f2c 100644
--- a/arch/x86/kvm/mmu/spte.c
+++ b/arch/x86/kvm/mmu/spte.c
@@ -90,6 +90,34 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
E820_TYPE_RAM);
}
+/*
+ * Returns true if the SPTE has bits that may be set without holding mmu_lock.
+ * The caller is responsible for checking if the SPTE is shadow-present, and
+ * for determining whether or not the caller cares about non-leaf SPTEs.
+ */
+bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomically update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
+ return true;
+
+ if (is_access_track_spte(spte))
+ return true;
+
+ if (spte_ad_enabled(spte)) {
+ if (!(spte & shadow_accessed_mask) ||
+ (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
+ return true;
+ }
+
+ return false;
+}
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index c571784cb567..80ab0f5cff01 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -404,6 +404,8 @@ static inline u64 get_mmio_spte_generation(u64 spte)
return gen;
}
+bool spte_has_volatile_bits(u64 spte);
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
The patch below does not apply to the 4.19-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 54eb3ef56f36827aad90915df33387d4c2b5df5a Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:42 +0000
Subject: [PATCH] KVM: x86/mmu: Move shadow-present check out of
spte_has_volatile_bits()
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 48dcb6a782f4..311e4e1d7870 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -473,32 +473,6 @@ static u64 __get_spte_lockless(u64 *sptep)
}
#endif
-static bool spte_has_volatile_bits(u64 spte)
-{
- if (!is_shadow_present_pte(spte))
- return false;
-
- /*
- * Always atomically update spte if it can be updated
- * out of mmu-lock, it can ensure dirty bit is not lost,
- * also, it can help us to get a stable is_writable_pte()
- * to ensure tlb flush is not missed.
- */
- if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
- return true;
-
- if (is_access_track_spte(spte))
- return true;
-
- if (spte_ad_enabled(spte)) {
- if (!(spte & shadow_accessed_mask) ||
- (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
- return true;
- }
-
- return false;
-}
-
/* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present
@@ -593,7 +567,8 @@ static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level;
- if (!spte_has_volatile_bits(old_spte))
+ if (!is_shadow_present_pte(old_spte) ||
+ !spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, 0ull);
else
old_spte = __update_clear_spte_slow(sptep, 0ull);
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
index 4739b53c9734..e5c0b6db6f2c 100644
--- a/arch/x86/kvm/mmu/spte.c
+++ b/arch/x86/kvm/mmu/spte.c
@@ -90,6 +90,34 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
E820_TYPE_RAM);
}
+/*
+ * Returns true if the SPTE has bits that may be set without holding mmu_lock.
+ * The caller is responsible for checking if the SPTE is shadow-present, and
+ * for determining whether or not the caller cares about non-leaf SPTEs.
+ */
+bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomically update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
+ return true;
+
+ if (is_access_track_spte(spte))
+ return true;
+
+ if (spte_ad_enabled(spte)) {
+ if (!(spte & shadow_accessed_mask) ||
+ (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
+ return true;
+ }
+
+ return false;
+}
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index c571784cb567..80ab0f5cff01 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -404,6 +404,8 @@ static inline u64 get_mmio_spte_generation(u64 spte)
return gen;
}
+bool spte_has_volatile_bits(u64 spte);
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 54eb3ef56f36827aad90915df33387d4c2b5df5a Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Sat, 23 Apr 2022 03:47:42 +0000
Subject: [PATCH] KVM: x86/mmu: Move shadow-present check out of
spte_has_volatile_bits()
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20220423034752.1161007-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 48dcb6a782f4..311e4e1d7870 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -473,32 +473,6 @@ static u64 __get_spte_lockless(u64 *sptep)
}
#endif
-static bool spte_has_volatile_bits(u64 spte)
-{
- if (!is_shadow_present_pte(spte))
- return false;
-
- /*
- * Always atomically update spte if it can be updated
- * out of mmu-lock, it can ensure dirty bit is not lost,
- * also, it can help us to get a stable is_writable_pte()
- * to ensure tlb flush is not missed.
- */
- if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
- return true;
-
- if (is_access_track_spte(spte))
- return true;
-
- if (spte_ad_enabled(spte)) {
- if (!(spte & shadow_accessed_mask) ||
- (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
- return true;
- }
-
- return false;
-}
-
/* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present
@@ -593,7 +567,8 @@ static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level;
- if (!spte_has_volatile_bits(old_spte))
+ if (!is_shadow_present_pte(old_spte) ||
+ !spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, 0ull);
else
old_spte = __update_clear_spte_slow(sptep, 0ull);
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
index 4739b53c9734..e5c0b6db6f2c 100644
--- a/arch/x86/kvm/mmu/spte.c
+++ b/arch/x86/kvm/mmu/spte.c
@@ -90,6 +90,34 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
E820_TYPE_RAM);
}
+/*
+ * Returns true if the SPTE has bits that may be set without holding mmu_lock.
+ * The caller is responsible for checking if the SPTE is shadow-present, and
+ * for determining whether or not the caller cares about non-leaf SPTEs.
+ */
+bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomically update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
+ return true;
+
+ if (is_access_track_spte(spte))
+ return true;
+
+ if (spte_ad_enabled(spte)) {
+ if (!(spte & shadow_accessed_mask) ||
+ (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
+ return true;
+ }
+
+ return false;
+}
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index c571784cb567..80ab0f5cff01 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -404,6 +404,8 @@ static inline u64 get_mmio_spte_generation(u64 spte)
return gen;
}
+bool spte_has_volatile_bits(u64 spte);
+
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,