When wrapping code, use ';' better than using ',' which is more
in line with the coding habits of most engineers.
Signed-off-by: Lu Hongfei <luhongfei(a)vivo.com>
---
Compared to the previous version, the modifications made are:
1. Modified the subject to make it clearer and more accurate
2. Newly optimized typo in tcp_hdr_options.c
tools/testing/selftests/bpf/benchs/bench_ringbufs.c | 2 +-
tools/testing/selftests/bpf/prog_tests/tcp_hdr_options.c | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/bpf/benchs/bench_ringbufs.c b/tools/testing/selftests/bpf/benchs/bench_ringbufs.c
index 3ca14ad36607..e1ee979e6acc 100644
--- a/tools/testing/selftests/bpf/benchs/bench_ringbufs.c
+++ b/tools/testing/selftests/bpf/benchs/bench_ringbufs.c
@@ -399,7 +399,7 @@ static void perfbuf_libbpf_setup(void)
ctx->skel = perfbuf_setup_skeleton();
memset(&attr, 0, sizeof(attr));
- attr.config = PERF_COUNT_SW_BPF_OUTPUT,
+ attr.config = PERF_COUNT_SW_BPF_OUTPUT;
attr.type = PERF_TYPE_SOFTWARE;
attr.sample_type = PERF_SAMPLE_RAW;
/* notify only every Nth sample */
diff --git a/tools/testing/selftests/bpf/prog_tests/tcp_hdr_options.c b/tools/testing/selftests/bpf/prog_tests/tcp_hdr_options.c
index 13bcaeb028b8..56685fc03c7e 100644
--- a/tools/testing/selftests/bpf/prog_tests/tcp_hdr_options.c
+++ b/tools/testing/selftests/bpf/prog_tests/tcp_hdr_options.c
@@ -347,7 +347,7 @@ static void syncookie_estab(void)
exp_active_estab_in.max_delack_ms = 22;
exp_passive_hdr_stg.syncookie = true;
- exp_active_hdr_stg.resend_syn = true,
+ exp_active_hdr_stg.resend_syn = true;
prepare_out();
--
2.39.0
When wrapping code, use ';' better than using ',' which is more
in line with the coding habits of most engineers.
Signed-off-by: Lu Hongfei <luhongfei(a)vivo.com>
---
tools/testing/selftests/bpf/benchs/bench_ringbufs.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tools/testing/selftests/bpf/benchs/bench_ringbufs.c b/tools/testing/selftests/bpf/benchs/bench_ringbufs.c
index 3ca14ad36607..e1ee979e6acc 100644
--- a/tools/testing/selftests/bpf/benchs/bench_ringbufs.c
+++ b/tools/testing/selftests/bpf/benchs/bench_ringbufs.c
@@ -399,7 +399,7 @@ static void perfbuf_libbpf_setup(void)
ctx->skel = perfbuf_setup_skeleton();
memset(&attr, 0, sizeof(attr));
- attr.config = PERF_COUNT_SW_BPF_OUTPUT,
+ attr.config = PERF_COUNT_SW_BPF_OUTPUT;
attr.type = PERF_TYPE_SOFTWARE;
attr.sample_type = PERF_SAMPLE_RAW;
/* notify only every Nth sample */
--
2.39.0
From: Roberto Sassu <roberto.sassu(a)huawei.com>
Define a new TLV-based format for keys and signatures, aiming to store and
use in the kernel the crypto material from other unsupported formats
(e.g. PGP).
TLV fields have been defined to fill the corresponding kernel structures
public_key, public_key_signature and key_preparsed_payload.
Keys:
struct public_key { struct key_preparsed_payload {
KEY_PUB --> void *key;
u32 keylen; --> prep->payload.data[asym_crypto]
KEY_ALGO --> const char *pkey_algo;
KEY_KID0
KEY_KID1 --> prep->payload.data[asym_key_ids]
KEY_KID2
KEY_DESC --> prep->description
Signatures:
struct public_key_signature {
SIG_S --> u8 *s;
u32 s_size;
SIG_KEY_ALGO --> const char *pkey_algo;
SIG_HASH_ALGO --> const char *hash_algo;
u32 digest_size;
SIG_ENC --> const char *encoding;
SIG_KID0
SIG_KID1 --> struct asymmetric_key_id *auth_ids[3];
SIG_KID2
For keys, since the format conversion has to be done in user space, user
space is assumed to be trusted, in this proposal. Without this assumption,
a malicious conversion tool could make a user load to the kernel a
different key than the one expected.
That should not be a particular problem for keys that are embedded in the
kernel image and loaded at boot, since the conversion happens in a trusted
environment such as the building infrastructure of the Linux distribution
vendor.
In the other cases, such as enrolling a key through the Machine Owner Key
(MOK) mechanism, the user is responsible to ensure that the crypto material
carried in the original format remains the same after the conversion.
For signatures, assuming the strength of the crypto algorithms, altering
the crypto material is simply a Denial-of-Service (DoS), as data can be
validated only with the right signature.
This patch set also offers the following contributions:
- An API similar to the PKCS#7 one, to verify the authenticity of system
data through user asymmetric keys and signatures
- A mechanism to store a keyring blob in the kernel image and to extract
and load the keys at system boot
- eBPF binding, so that data authenticity verification with user asymmetric
keys and signatures can be carried out also with eBPF programs
- A new command for gnupg (in user space), to convert keys and signatures
from PGP to the new kernel format
The primary use case for this patch set is to verify the authenticity of
RPM package headers with the PGP keys of the Linux distribution. Once their
authenticity is verified, file digests can be extracted from those RPM
headers and used as reference values for IMA Appraisal.
Compared to the previous patch set, the main difference is not relying on
User Mode Drivers (UMDs) for the conversion from the original format to the
kernel format, due to the concern that full isolation of the UMD process
cannot be achieved against a fully privileged system user (root).
The discussion is still ongoing here:
https://lore.kernel.org/linux-integrity/eb31920bd00e2c921b0aa6ebed8745cb013…
This however does not prevent the goal mentioned above of verifying the
authenticity of RPM headers to be achieved. The fact that Linux
distribution vendors do the conversion in their infrastructure is a good
enough guarantee.
A very quick way to test the patch set is to execute:
# gpg --conv-kernel /etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-rawhide-primary | keyctl padd asymmetric "" @u
# keyctl show @u
Keyring
762357580 --alswrv 0 65534 keyring: _uid.0
567216072 --als--v 0 0 \_ asymmetric: PGP: 18b8e74c
Patches 1-2 preliminarly export some definitions to user space so that
conversion tools can specify the right public key algorithms and signature
encodings (digest algorithms are already exported).
Patches 3-5 introduce the user asymmetric keys and signatures.
Patches 6 introduces a system API for verifying the authenticity of system
data through user asymmetric keys and signatures.
Patch 7-8 introduce a mechanism to store a keyring blob with user
asymmetric keys in the kernel image, and load them at system boot.
Patches 9-10 introduce the eBPF binding and corresponding test (which can
be enabled only after the gnupg patches are upstreamed).
Patches 1-2 [GNUPG] introduce the new gpg command --conv-kernel to convert
PGP keys and signatures to the new kernel format.
Changelog
v1:
- Remove useless check in validate_key() (suggested by Yonghong)
- Don't rely on User Mode Drivers for the conversion from the original
format to the kernel format
- Use the more extensible TLV format, instead of a fixed structure
Roberto Sassu (10):
crypto: Export public key algorithm information
crypto: Export signature encoding information
KEYS: asymmetric: Introduce a parser for user asymmetric keys and sigs
KEYS: asymmetric: Introduce the user asymmetric key parser
KEYS: asymmetric: Introduce the user asymmetric key signature parser
verification: Add verify_uasym_signature() and
verify_uasym_sig_message()
KEYS: asymmetric: Preload user asymmetric keys from a keyring blob
KEYS: Introduce load_uasym_keyring()
bpf: Introduce bpf_verify_uasym_signature() kfunc
selftests/bpf: Prepare a test for user asymmetric key signatures
MAINTAINERS | 1 +
certs/Kconfig | 11 +
certs/Makefile | 7 +
certs/system_certificates.S | 18 +
certs/system_keyring.c | 166 +++++-
crypto/Kconfig | 6 +
crypto/Makefile | 2 +
crypto/asymmetric_keys/Kconfig | 14 +
crypto/asymmetric_keys/Makefile | 10 +
crypto/asymmetric_keys/asymmetric_type.c | 3 +-
crypto/asymmetric_keys/uasym_key_parser.c | 229 ++++++++
crypto/asymmetric_keys/uasym_key_preload.c | 99 ++++
crypto/asymmetric_keys/uasym_parser.c | 201 +++++++
crypto/asymmetric_keys/uasym_parser.h | 43 ++
crypto/asymmetric_keys/uasym_sig_parser.c | 491 ++++++++++++++++++
crypto/pub_key_info.c | 20 +
crypto/sig_enc_info.c | 16 +
include/crypto/pub_key_info.h | 15 +
include/crypto/sig_enc_info.h | 15 +
include/crypto/uasym_keys_sigs.h | 82 +++
include/keys/asymmetric-type.h | 1 +
include/linux/verification.h | 50 ++
include/uapi/linux/pub_key_info.h | 22 +
include/uapi/linux/sig_enc_info.h | 18 +
include/uapi/linux/uasym_parser.h | 107 ++++
kernel/trace/bpf_trace.c | 68 ++-
...y_pkcs7_sig.c => verify_pkcs7_uasym_sig.c} | 159 +++++-
...s7_sig.c => test_verify_pkcs7_uasym_sig.c} | 18 +-
.../testing/selftests/bpf/verify_sig_setup.sh | 82 ++-
29 files changed, 1924 insertions(+), 50 deletions(-)
create mode 100644 crypto/asymmetric_keys/uasym_key_parser.c
create mode 100644 crypto/asymmetric_keys/uasym_key_preload.c
create mode 100644 crypto/asymmetric_keys/uasym_parser.c
create mode 100644 crypto/asymmetric_keys/uasym_parser.h
create mode 100644 crypto/asymmetric_keys/uasym_sig_parser.c
create mode 100644 crypto/pub_key_info.c
create mode 100644 crypto/sig_enc_info.c
create mode 100644 include/crypto/pub_key_info.h
create mode 100644 include/crypto/sig_enc_info.h
create mode 100644 include/crypto/uasym_keys_sigs.h
create mode 100644 include/uapi/linux/pub_key_info.h
create mode 100644 include/uapi/linux/sig_enc_info.h
create mode 100644 include/uapi/linux/uasym_parser.h
rename tools/testing/selftests/bpf/prog_tests/{verify_pkcs7_sig.c => verify_pkcs7_uasym_sig.c} (69%)
rename tools/testing/selftests/bpf/progs/{test_verify_pkcs7_sig.c => test_verify_pkcs7_uasym_sig.c} (82%)
--
2.34.1
Make sv48 the default address space for mmap as some applications
currently depend on this assumption. Also enable users to select
desired address space using a non-zero hint address to mmap. Previous
kernel changes caused Java and other applications to be broken on sv57
which this patch fixes.
Documentation is also added to the RISC-V virtual memory section to explain
these changes.
Charlie Jenkins (2):
RISC-V: mm: Restrict address space for sv39,sv48,sv57
RISC-V: mm: Update documentation and include test
Documentation/riscv/vm-layout.rst | 22 +++++++++
arch/riscv/include/asm/elf.h | 2 +-
arch/riscv/include/asm/pgtable.h | 21 ++++++--
arch/riscv/include/asm/processor.h | 34 ++++++++++---
tools/testing/selftests/riscv/Makefile | 2 +-
tools/testing/selftests/riscv/mm/.gitignore | 1 +
tools/testing/selftests/riscv/mm/Makefile | 21 ++++++++
.../selftests/riscv/mm/testcases/mmap.c | 49 +++++++++++++++++++
8 files changed, 139 insertions(+), 13 deletions(-)
create mode 100644 tools/testing/selftests/riscv/mm/.gitignore
create mode 100644 tools/testing/selftests/riscv/mm/Makefile
create mode 100644 tools/testing/selftests/riscv/mm/testcases/mmap.c
--
2.41.0
=== Context ===
In the context of a middlebox, fragmented packets are tricky to handle.
The full 5-tuple of a packet is often only available in the first
fragment which makes enforcing consistent policy difficult. There are
really only two stateless options, neither of which are very nice:
1. Enforce policy on first fragment and accept all subsequent fragments.
This works but may let in certain attacks or allow data exfiltration.
2. Enforce policy on first fragment and drop all subsequent fragments.
This does not really work b/c some protocols may rely on
fragmentation. For example, DNS may rely on oversized UDP packets for
large responses.
So stateful tracking is the only sane option. RFC 8900 [0] calls this
out as well in section 6.3:
Middleboxes [...] should process IP fragments in a manner that is
consistent with [RFC0791] and [RFC8200]. In many cases, middleboxes
must maintain state in order to achieve this goal.
=== BPF related bits ===
Policy has traditionally been enforced from XDP/TC hooks. Both hooks
run before kernel reassembly facilities. However, with the new
BPF_PROG_TYPE_NETFILTER, we can rather easily hook into existing
netfilter reassembly infra.
The basic idea is we bump a refcnt on the netfilter defrag module and
then run the bpf prog after the defrag module runs. This allows bpf
progs to transparently see full, reassembled packets. The nice thing
about this is that progs don't have to carry around logic to detect
fragments.
=== Changelog ===
Changes from v1:
* Drop bpf_program__attach_netfilter() patches
* static -> static const where appropriate
* Fix callback assignment order during registration
* Only request_module() if callbacks are missing
* Fix retval when modprobe fails in userspace
* Fix v6 defrag module name (nf_defrag_ipv6_hooks -> nf_defrag_ipv6)
* Simplify priority checking code
* Add warning if module doesn't assign callbacks in the future
* Take refcnt on module while defrag link is active
[0]: https://datatracker.ietf.org/doc/html/rfc8900
Daniel Xu (6):
netfilter: defrag: Add glue hooks for enabling/disabling defrag
netfilter: bpf: Support BPF_F_NETFILTER_IP_DEFRAG in netfilter link
netfilter: bpf: Prevent defrag module unload while link active
bpf: selftests: Support not connecting client socket
bpf: selftests: Support custom type and proto for client sockets
bpf: selftests: Add defrag selftests
include/linux/netfilter.h | 15 +
include/uapi/linux/bpf.h | 5 +
net/ipv4/netfilter/nf_defrag_ipv4.c | 17 +-
net/ipv6/netfilter/nf_defrag_ipv6_hooks.c | 11 +
net/netfilter/core.c | 6 +
net/netfilter/nf_bpf_link.c | 149 ++++++++-
tools/include/uapi/linux/bpf.h | 5 +
tools/testing/selftests/bpf/Makefile | 4 +-
.../selftests/bpf/generate_udp_fragments.py | 90 ++++++
.../selftests/bpf/ip_check_defrag_frags.h | 57 ++++
tools/testing/selftests/bpf/network_helpers.c | 26 +-
tools/testing/selftests/bpf/network_helpers.h | 3 +
.../bpf/prog_tests/ip_check_defrag.c | 282 ++++++++++++++++++
.../selftests/bpf/progs/ip_check_defrag.c | 104 +++++++
14 files changed, 752 insertions(+), 22 deletions(-)
create mode 100755 tools/testing/selftests/bpf/generate_udp_fragments.py
create mode 100644 tools/testing/selftests/bpf/ip_check_defrag_frags.h
create mode 100644 tools/testing/selftests/bpf/prog_tests/ip_check_defrag.c
create mode 100644 tools/testing/selftests/bpf/progs/ip_check_defrag.c
--
2.41.0
From: Björn Töpel <bjorn(a)rivosinc.com>
BPF tests that load /proc/kallsyms, e.g. bpf_cookie, will perform a
buffer overrun if the number of syms on the system is larger than
MAX_SYMS.
Bump the MAX_SYMS to 400000, and add a runtime check that bails out if
the maximum is reached.
Signed-off-by: Björn Töpel <bjorn(a)rivosinc.com>
---
tools/testing/selftests/bpf/trace_helpers.c | 5 ++++-
1 file changed, 4 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/bpf/trace_helpers.c b/tools/testing/selftests/bpf/trace_helpers.c
index 9b070cdf44ac..f83d9f65c65b 100644
--- a/tools/testing/selftests/bpf/trace_helpers.c
+++ b/tools/testing/selftests/bpf/trace_helpers.c
@@ -18,7 +18,7 @@
#define TRACEFS_PIPE "/sys/kernel/tracing/trace_pipe"
#define DEBUGFS_PIPE "/sys/kernel/debug/tracing/trace_pipe"
-#define MAX_SYMS 300000
+#define MAX_SYMS 400000
static struct ksym syms[MAX_SYMS];
static int sym_cnt;
@@ -46,6 +46,9 @@ int load_kallsyms_refresh(void)
break;
if (!addr)
continue;
+ if (i >= MAX_SYMS)
+ return -EFBIG;
+
syms[i].addr = (long) addr;
syms[i].name = strdup(func);
i++;
base-commit: fd283ab196a867f8f65f36913e0fadd031fcb823
--
2.39.2
*Changes in v23*:
- Set vec_buf_index in loop only when vec_buf_index is set
- Return -EFAULT instead of -EINVAL if vec is NULL
- Correctly return the walk ending address to the page granularity
*Changes in v22*:
- Interface change:
- Replace [start start + len) with [start, end)
- Return the ending address of the address walk in start
*Changes in v21*:
- Abort walk instead of returning error if WP is to be performed on
partial hugetlb
*Changes in v20*
- Correct PAGE_IS_FILE and add PAGE_IS_PFNZERO
*Changes in v19*
- Minor changes and interface updates
*Changes in v18*
- Rebase on top of next-20230613
- Minor updates
*Changes in v17*
- Rebase on top of next-20230606
- Minor improvements in PAGEMAP_SCAN IOCTL patch
*Changes in v16*
- Fix a corner case
- Add exclusive PM_SCAN_OP_WP back
*Changes in v15*
- Build fix (Add missed build fix in RESEND)
*Changes in v14*
- Fix build error caused by #ifdef added at last minute in some configs
*Changes in v13*
- Rebase on top of next-20230414
- Give-up on using uffd_wp_range() and write new helpers, flush tlb only
once
*Changes in v12*
- Update and other memory types to UFFD_FEATURE_WP_ASYNC
- Rebaase on top of next-20230406
- Review updates
*Changes in v11*
- Rebase on top of next-20230307
- Base patches on UFFD_FEATURE_WP_UNPOPULATED
- Do a lot of cosmetic changes and review updates
- Remove ENGAGE_WP + !GET operation as it can be performed with
UFFDIO_WRITEPROTECT
*Changes in v10*
- Add specific condition to return error if hugetlb is used with wp
async
- Move changes in tools/include/uapi/linux/fs.h to separate patch
- Add documentation
*Changes in v9:*
- Correct fault resolution for userfaultfd wp async
- Fix build warnings and errors which were happening on some configs
- Simplify pagemap ioctl's code
*Changes in v8:*
- Update uffd async wp implementation
- Improve PAGEMAP_IOCTL implementation
*Changes in v7:*
- Add uffd wp async
- Update the IOCTL to use uffd under the hood instead of soft-dirty
flags
*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() syscall [1]. The GetWriteWatch{} retrieves the addresses of
the pages that are written to in a region of virtual memory.
This syscall is used in Windows applications and games etc. This syscall is
being emulated in pretty slow manner in userspace. Our purpose is to
enhance the kernel such that we translate it efficiently in a better way.
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels. We intend to replace those with these patches.
So the whole gaming on Linux can effectively get benefit from this. It
means there would be tons of users of this code.
CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.
Andrei's defines the following uses of this code:
* it is more granular and allows us to track changed pages more
effectively. The current interface can clear dirty bits for the entire
process only. In addition, reading info about pages is a separate
operation. It means we must freeze the process to read information
about all its pages, reset dirty bits, only then we can start dumping
pages. The information about pages becomes more and more outdated,
while we are processing pages. The new interface solves both these
downsides. First, it allows us to read pte bits and clear the
soft-dirty bit atomically. It means that CRIU will not need to freeze
processes to pre-dump their memory. Second, it clears soft-dirty bits
for a specified region of memory. It means CRIU will have actual info
about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
is happening in the kernel. With the old interface, we have to read
pagemap for each page.
*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically
So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.
At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)
All the different masks were added on the request of CRIU devs to create
interface more generic and better.
[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-…
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com
* Original Cover letter from v8*
Hello,
Note:
Soft-dirty pages and pages which have been written-to are synonyms. As
kernel already has soft-dirty feature inside which we have given up to
use, we are using written-to terminology while using UFFD async WP under
the hood.
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear
the info about page table entries. The following operations are
supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN),
file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped
(PAGE_IS_SWAPPED).
- Write-protect the pages (PAGEMAP_WP_ENGAGE) to start finding which
pages have been written-to.
- Find pages which have been written-to and write protect the pages
(atomic PAGE_IS_WRITTEN + PAGEMAP_WP_ENGAGE)
It is possible to find and clear soft-dirty pages entirely in userspace.
But it isn't efficient:
- The mprotect and SIGSEGV handler for bookkeeping
- The userfaultfd wp (synchronous) with the handler for bookkeeping
Some benchmarks can be seen here[1]. This series adds features that weren't
present earlier:
- There is no atomic get soft-dirty/Written-to status and clear present in
the kernel.
- The pages which have been written-to can not be found in accurate way.
(Kernel's soft-dirty PTE bit + sof_dirty VMA bit shows more soft-dirty
pages than there actually are.)
Historically, soft-dirty PTE bit tracking has been used in the CRIU
project. The procfs interface is enough for finding the soft-dirty bit
status and clearing the soft-dirty bit of all the pages of a process.
We have the use case where we need to track the soft-dirty PTE bit for
only specific pages on-demand. We need this tracking and clear mechanism
of a region of memory while the process is running to emulate the
getWriteWatch() syscall of Windows.
*(Moved to using UFFD instead of soft-dirtyi feature to find pages which
have been written-to from v7 patch series)*:
Stop using the soft-dirty flags for finding which pages have been
written to. It is too delicate and wrong as it shows more soft-dirty
pages than the actual soft-dirty pages. There is no interest in
correcting it [2][3] as this is how the feature was written years ago.
It shouldn't be updated to changed behaviour. Peter Xu has suggested
using the async version of the UFFD WP [4] as it is based inherently
on the PTEs.
So in this patch series, I've added a new mode to the UFFD which is
asynchronous version of the write protect. When this variant of the
UFFD WP is used, the page faults are resolved automatically by the
kernel. The pages which have been written-to can be found by reading
pagemap file (!PM_UFFD_WP). This feature can be used successfully to
find which pages have been written to from the time the pages were
write protected. This works just like the soft-dirty flag without
showing any extra pages which aren't soft-dirty in reality.
The information related to pages if the page is file mapped, present and
swapped is required for the CRIU project [5][6]. The addition of the
required mask, any mask, excluded mask and return masks are also required
for the CRIU project [5].
The IOCTL returns the addresses of the pages which match the specific
masks. The page addresses are returned in struct page_region in a compact
form. The max_pages is needed to support a use case where user only wants
to get a specific number of pages. So there is no need to find all the
pages of interest in the range when max_pages is specified. The IOCTL
returns when the maximum number of the pages are found. The max_pages is
optional. If max_pages is specified, it must be equal or greater than the
vec_size. This restriction is needed to handle worse case when one
page_region only contains info of one page and it cannot be compacted.
This is needed to emulate the Windows getWriteWatch() syscall.
The patch series include the detailed selftest which can be used as an
example for the uffd async wp test and PAGEMAP_IOCTL. It shows the
interface usages as well.
[1] https://lore.kernel.org/lkml/54d4c322-cd6e-eefd-b161-2af2b56aae24@collabora…
[2] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[3] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[4] https://lore.kernel.org/all/Y6Hc2d+7eTKs7AiH@x1n
[5] https://lore.kernel.org/all/YyiDg79flhWoMDZB@gmail.com/
[6] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com/
Regards,
Muhammad Usama Anjum
Muhammad Usama Anjum (4):
fs/proc/task_mmu: Implement IOCTL to get and optionally clear info
about PTEs
tools headers UAPI: Update linux/fs.h with the kernel sources
mm/pagemap: add documentation of PAGEMAP_SCAN IOCTL
selftests: mm: add pagemap ioctl tests
Peter Xu (1):
userfaultfd: UFFD_FEATURE_WP_ASYNC
Documentation/admin-guide/mm/pagemap.rst | 58 +
Documentation/admin-guide/mm/userfaultfd.rst | 35 +
fs/proc/task_mmu.c | 577 +++++++
fs/userfaultfd.c | 26 +-
include/linux/hugetlb.h | 1 +
include/linux/userfaultfd_k.h | 21 +-
include/uapi/linux/fs.h | 55 +
include/uapi/linux/userfaultfd.h | 9 +-
mm/hugetlb.c | 34 +-
mm/memory.c | 27 +-
tools/include/uapi/linux/fs.h | 55 +
tools/testing/selftests/mm/.gitignore | 2 +
tools/testing/selftests/mm/Makefile | 3 +-
tools/testing/selftests/mm/config | 1 +
tools/testing/selftests/mm/pagemap_ioctl.c | 1464 ++++++++++++++++++
tools/testing/selftests/mm/run_vmtests.sh | 4 +
16 files changed, 2348 insertions(+), 24 deletions(-)
create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c
mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
--
2.39.2
Changes in v22:
- Interface change:
- Replace [start start + len) with [start, end)
- Return the ending address of the address walk in start
Changes in v21:
- Abort walk instead of returning error if WP is to be performed on
partial hugetlb
*Changes in v20*
- Correct PAGE_IS_FILE and add PAGE_IS_PFNZERO
*Changes in v19*
- Minor changes and interface updates
*Changes in v18*
- Rebase on top of next-20230613
- Minor updates
*Changes in v17*
- Rebase on top of next-20230606
- Minor improvements in PAGEMAP_SCAN IOCTL patch
*Changes in v16*
- Fix a corner case
- Add exclusive PM_SCAN_OP_WP back
*Changes in v15*
- Build fix (Add missed build fix in RESEND)
*Changes in v14*
- Fix build error caused by #ifdef added at last minute in some configs
*Changes in v13*
- Rebase on top of next-20230414
- Give-up on using uffd_wp_range() and write new helpers, flush tlb only
once
*Changes in v12*
- Update and other memory types to UFFD_FEATURE_WP_ASYNC
- Rebaase on top of next-20230406
- Review updates
*Changes in v11*
- Rebase on top of next-20230307
- Base patches on UFFD_FEATURE_WP_UNPOPULATED
- Do a lot of cosmetic changes and review updates
- Remove ENGAGE_WP + !GET operation as it can be performed with
UFFDIO_WRITEPROTECT
*Changes in v10*
- Add specific condition to return error if hugetlb is used with wp
async
- Move changes in tools/include/uapi/linux/fs.h to separate patch
- Add documentation
*Changes in v9:*
- Correct fault resolution for userfaultfd wp async
- Fix build warnings and errors which were happening on some configs
- Simplify pagemap ioctl's code
*Changes in v8:*
- Update uffd async wp implementation
- Improve PAGEMAP_IOCTL implementation
*Changes in v7:*
- Add uffd wp async
- Update the IOCTL to use uffd under the hood instead of soft-dirty
flags
*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() syscall [1]. The GetWriteWatch{} retrieves the addresses of
the pages that are written to in a region of virtual memory.
This syscall is used in Windows applications and games etc. This syscall is
being emulated in pretty slow manner in userspace. Our purpose is to
enhance the kernel such that we translate it efficiently in a better way.
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels. We intend to replace those with these patches.
So the whole gaming on Linux can effectively get benefit from this. It
means there would be tons of users of this code.
CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.
Andrei's defines the following uses of this code:
* it is more granular and allows us to track changed pages more
effectively. The current interface can clear dirty bits for the entire
process only. In addition, reading info about pages is a separate
operation. It means we must freeze the process to read information
about all its pages, reset dirty bits, only then we can start dumping
pages. The information about pages becomes more and more outdated,
while we are processing pages. The new interface solves both these
downsides. First, it allows us to read pte bits and clear the
soft-dirty bit atomically. It means that CRIU will not need to freeze
processes to pre-dump their memory. Second, it clears soft-dirty bits
for a specified region of memory. It means CRIU will have actual info
about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
is happening in the kernel. With the old interface, we have to read
pagemap for each page.
*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically
So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.
At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)
All the different masks were added on the request of CRIU devs to create
interface more generic and better.
[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-…
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com
* Original Cover letter from v8*
Hello,
Note:
Soft-dirty pages and pages which have been written-to are synonyms. As
kernel already has soft-dirty feature inside which we have given up to
use, we are using written-to terminology while using UFFD async WP under
the hood.
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear
the info about page table entries. The following operations are
supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN),
file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped
(PAGE_IS_SWAPPED).
- Write-protect the pages (PAGEMAP_WP_ENGAGE) to start finding which
pages have been written-to.
- Find pages which have been written-to and write protect the pages
(atomic PAGE_IS_WRITTEN + PAGEMAP_WP_ENGAGE)
It is possible to find and clear soft-dirty pages entirely in userspace.
But it isn't efficient:
- The mprotect and SIGSEGV handler for bookkeeping
- The userfaultfd wp (synchronous) with the handler for bookkeeping
Some benchmarks can be seen here[1]. This series adds features that weren't
present earlier:
- There is no atomic get soft-dirty/Written-to status and clear present in
the kernel.
- The pages which have been written-to can not be found in accurate way.
(Kernel's soft-dirty PTE bit + sof_dirty VMA bit shows more soft-dirty
pages than there actually are.)
Historically, soft-dirty PTE bit tracking has been used in the CRIU
project. The procfs interface is enough for finding the soft-dirty bit
status and clearing the soft-dirty bit of all the pages of a process.
We have the use case where we need to track the soft-dirty PTE bit for
only specific pages on-demand. We need this tracking and clear mechanism
of a region of memory while the process is running to emulate the
getWriteWatch() syscall of Windows.
*(Moved to using UFFD instead of soft-dirtyi feature to find pages which
have been written-to from v7 patch series)*:
Stop using the soft-dirty flags for finding which pages have been
written to. It is too delicate and wrong as it shows more soft-dirty
pages than the actual soft-dirty pages. There is no interest in
correcting it [2][3] as this is how the feature was written years ago.
It shouldn't be updated to changed behaviour. Peter Xu has suggested
using the async version of the UFFD WP [4] as it is based inherently
on the PTEs.
So in this patch series, I've added a new mode to the UFFD which is
asynchronous version of the write protect. When this variant of the
UFFD WP is used, the page faults are resolved automatically by the
kernel. The pages which have been written-to can be found by reading
pagemap file (!PM_UFFD_WP). This feature can be used successfully to
find which pages have been written to from the time the pages were
write protected. This works just like the soft-dirty flag without
showing any extra pages which aren't soft-dirty in reality.
The information related to pages if the page is file mapped, present and
swapped is required for the CRIU project [5][6]. The addition of the
required mask, any mask, excluded mask and return masks are also required
for the CRIU project [5].
The IOCTL returns the addresses of the pages which match the specific
masks. The page addresses are returned in struct page_region in a compact
form. The max_pages is needed to support a use case where user only wants
to get a specific number of pages. So there is no need to find all the
pages of interest in the range when max_pages is specified. The IOCTL
returns when the maximum number of the pages are found. The max_pages is
optional. If max_pages is specified, it must be equal or greater than the
vec_size. This restriction is needed to handle worse case when one
page_region only contains info of one page and it cannot be compacted.
This is needed to emulate the Windows getWriteWatch() syscall.
The patch series include the detailed selftest which can be used as an
example for the uffd async wp test and PAGEMAP_IOCTL. It shows the
interface usages as well.
[1] https://lore.kernel.org/lkml/54d4c322-cd6e-eefd-b161-2af2b56aae24@collabora…
[2] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[3] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[4] https://lore.kernel.org/all/Y6Hc2d+7eTKs7AiH@x1n
[5] https://lore.kernel.org/all/YyiDg79flhWoMDZB@gmail.com/
[6] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com/
Regards,
Muhammad Usama Anjum
Muhammad Usama Anjum (4):
fs/proc/task_mmu: Implement IOCTL to get and optionally clear info
about PTEs
tools headers UAPI: Update linux/fs.h with the kernel sources
mm/pagemap: add documentation of PAGEMAP_SCAN IOCTL
selftests: mm: add pagemap ioctl tests
Peter Xu (1):
userfaultfd: UFFD_FEATURE_WP_ASYNC
Documentation/admin-guide/mm/pagemap.rst | 58 +
Documentation/admin-guide/mm/userfaultfd.rst | 35 +
fs/proc/task_mmu.c | 565 +++++++
fs/userfaultfd.c | 26 +-
include/linux/hugetlb.h | 1 +
include/linux/userfaultfd_k.h | 21 +-
include/uapi/linux/fs.h | 55 +
include/uapi/linux/userfaultfd.h | 9 +-
mm/hugetlb.c | 34 +-
mm/memory.c | 27 +-
tools/include/uapi/linux/fs.h | 55 +
tools/testing/selftests/mm/.gitignore | 2 +
tools/testing/selftests/mm/Makefile | 3 +-
tools/testing/selftests/mm/config | 1 +
tools/testing/selftests/mm/pagemap_ioctl.c | 1464 ++++++++++++++++++
tools/testing/selftests/mm/run_vmtests.sh | 4 +
16 files changed, 2336 insertions(+), 24 deletions(-)
create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c
mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
--
2.39.2