v22: fixing build error due to -march=zicfiss being picked in gcc-13 and above
but not actually doing any codegen or recognizing instruction for zicfiss.
Change in v22 makes dependence on `-fcf-protection=full` compiler flag to
ensure that toolchain has support and then only CONFIG_RISCV_USER_CFI will be
visible in menuconfig.
v21: fixed build errors.
Basics and overview
===================
Software with larger attack surfaces (e.g. network facing apps like databases,
browsers or apps relying on browser runtimes) suffer from memory corruption
issues which can be utilized by attackers to bend control flow of the program
to eventually gain control (by making their payload executable). Attackers are
able to perform such attacks by leveraging call-sites which rely on indirect
calls or return sites which rely on obtaining return address from stack memory.
To mitigate such attacks, risc-v extension zicfilp enforces that all indirect
calls must land on a landing pad instruction `lpad` else cpu will raise software
check exception (a new cpu exception cause code on riscv).
Similarly for return flow, risc-v extension zicfiss extends architecture with
- `sspush` instruction to push return address on a shadow stack
- `sspopchk` instruction to pop return address from shadow stack
and compare with input operand (i.e. return address on stack)
- `sspopchk` to raise software check exception if comparision above
was a mismatch
- Protection mechanism using which shadow stack is not writeable via
regular store instructions
More information an details can be found at extensions github repo [1].
Equivalent to landing pad (zicfilp) on x86 is `ENDBRANCH` instruction in Intel
CET [3] and branch target identification (BTI) [4] on arm.
Similarly x86's Intel CET has shadow stack [5] and arm64 has guarded control
stack (GCS) [6] which are very similar to risc-v's zicfiss shadow stack.
x86 and arm64 support for user mode shadow stack is already in mainline.
Kernel awareness for user control flow integrity
================================================
This series picks up Samuel Holland's envcfg changes [2] as well. So if those are
being applied independently, they should be removed from this series.
Enabling:
In order to maintain compatibility and not break anything in user mode, kernel
doesn't enable control flow integrity cpu extensions on binary by default.
Instead exposes a prctl interface to enable, disable and lock the shadow stack
or landing pad feature for a task. This allows userspace (loader) to enumerate
if all objects in its address space are compiled with shadow stack and landing
pad support and accordingly enable the feature. Additionally if a subsequent
`dlopen` happens on a library, user mode can take a decision again to disable
the feature (if incoming library is not compiled with support) OR terminate the
task (if user mode policy is strict to have all objects in address space to be
compiled with control flow integirty cpu feature). prctl to enable shadow stack
results in allocating shadow stack from virtual memory and activating for user
address space. x86 and arm64 are also following same direction due to similar
reason(s).
clone/fork:
On clone and fork, cfi state for task is inherited by child. Shadow stack is
part of virtual memory and is a writeable memory from kernel perspective
(writeable via a restricted set of instructions aka shadow stack instructions)
Thus kernel changes ensure that this memory is converted into read-only when
fork/clone happens and COWed when fault is taken due to sspush, sspopchk or
ssamoswap. In case `CLONE_VM` is specified and shadow stack is to be enabled,
kernel will automatically allocate a shadow stack for that clone call.
map_shadow_stack:
x86 introduced `map_shadow_stack` system call to allow user space to explicitly
map shadow stack memory in its address space. It is useful to allocate shadow
for different contexts managed by a single thread (green threads or contexts)
risc-v implements this system call as well.
signal management:
If shadow stack is enabled for a task, kernel performs an asynchronous control
flow diversion to deliver the signal and eventually expects userspace to issue
sigreturn so that original execution can be resumed. Even though resume context
is prepared by kernel, it is in user space memory and is subject to memory
corruption and corruption bugs can be utilized by attacker in this race window
to perform arbitrary sigreturn and eventually bypass cfi mechanism.
Another issue is how to ensure that cfi related state on sigcontext area is not
trampled by legacy apps or apps compiled with old kernel headers.
In order to mitigate control-flow hijacting, kernel prepares a token and place
it on shadow stack before signal delivery and places address of token in
sigcontext structure. During sigreturn, kernel obtains address of token from
sigcontext struture, reads token from shadow stack and validates it and only
then allow sigreturn to succeed. Compatiblity issue is solved by adopting
dynamic sigcontext management introduced for vector extension. This series
re-factor the code little bit to allow future sigcontext management easy (as
proposed by Andy Chiu from SiFive)
config and compilation:
Introduce a new risc-v config option `CONFIG_RISCV_USER_CFI`. Selecting this
config option picks the kernel support for user control flow integrity. This
optin is presented only if toolchain has shadow stack and landing pad support.
And is on purpose guarded by toolchain support. Reason being that eventually
vDSO also needs to be compiled in with shadow stack and landing pad support.
vDSO compile patches are not included as of now because landing pad labeling
scheme is yet to settle for usermode runtime.
To get more information on kernel interactions with respect to
zicfilp and zicfiss, patch series adds documentation for
`zicfilp` and `zicfiss` in following:
Documentation/arch/riscv/zicfiss.rst
Documentation/arch/riscv/zicfilp.rst
How to test this series
=======================
Toolchain
---------
$ git clone git@github.com:sifive/riscv-gnu-toolchain.git -b cfi-dev
$ riscv-gnu-toolchain/configure --prefix=<path-to-where-to-build> --with-arch=rv64gc_zicfilp_zicfiss --enable-linux --disable-gdb --with-extra-multilib-test="rv64gc_zicfilp_zicfiss-lp64d:-static"
$ make -j$(nproc)
Qemu
----
Get the lastest qemu
$ cd qemu
$ mkdir build
$ cd build
$ ../configure --target-list=riscv64-softmmu
$ make -j$(nproc)
Opensbi
-------
$ git clone git@github.com:deepak0414/opensbi.git -b v6_cfi_spec_split_opensbi
$ make CROSS_COMPILE=<your riscv toolchain> -j$(nproc) PLATFORM=generic
Linux
-----
Running defconfig is fine. CFI is enabled by default if the toolchain
supports it.
$ make ARCH=riscv CROSS_COMPILE=<path-to-cfi-riscv-gnu-toolchain>/build/bin/riscv64-unknown-linux-gnu- -j$(nproc) defconfig
$ make ARCH=riscv CROSS_COMPILE=<path-to-cfi-riscv-gnu-toolchain>/build/bin/riscv64-unknown-linux-gnu- -j$(nproc)
Running
-------
Modify your qemu command to have:
-bios <path-to-cfi-opensbi>/build/platform/generic/firmware/fw_dynamic.bin
-cpu rv64,zicfilp=true,zicfiss=true,zimop=true,zcmop=true
References
==========
[1] - https://github.com/riscv/riscv-cfi
[2] - https://lore.kernel.org/all/20240814081126.956287-1-samuel.holland@sifive.c…
[3] - https://lwn.net/Articles/889475/
[4] - https://developer.arm.com/documentation/109576/0100/Branch-Target-Identific…
[5] - https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-i…
[6] - https://lwn.net/Articles/940403/
To: Thomas Gleixner <tglx(a)linutronix.de>
To: Ingo Molnar <mingo(a)redhat.com>
To: Borislav Petkov <bp(a)alien8.de>
To: Dave Hansen <dave.hansen(a)linux.intel.com>
To: x86(a)kernel.org
To: H. Peter Anvin <hpa(a)zytor.com>
To: Andrew Morton <akpm(a)linux-foundation.org>
To: Liam R. Howlett <Liam.Howlett(a)oracle.com>
To: Vlastimil Babka <vbabka(a)suse.cz>
To: Lorenzo Stoakes <lorenzo.stoakes(a)oracle.com>
To: Paul Walmsley <paul.walmsley(a)sifive.com>
To: Palmer Dabbelt <palmer(a)dabbelt.com>
To: Albert Ou <aou(a)eecs.berkeley.edu>
To: Conor Dooley <conor(a)kernel.org>
To: Rob Herring <robh(a)kernel.org>
To: Krzysztof Kozlowski <krzk+dt(a)kernel.org>
To: Arnd Bergmann <arnd(a)arndb.de>
To: Christian Brauner <brauner(a)kernel.org>
To: Peter Zijlstra <peterz(a)infradead.org>
To: Oleg Nesterov <oleg(a)redhat.com>
To: Eric Biederman <ebiederm(a)xmission.com>
To: Kees Cook <kees(a)kernel.org>
To: Jonathan Corbet <corbet(a)lwn.net>
To: Shuah Khan <shuah(a)kernel.org>
To: Jann Horn <jannh(a)google.com>
To: Conor Dooley <conor+dt(a)kernel.org>
To: Miguel Ojeda <ojeda(a)kernel.org>
To: Alex Gaynor <alex.gaynor(a)gmail.com>
To: Boqun Feng <boqun.feng(a)gmail.com>
To: Gary Guo <gary(a)garyguo.net>
To: Björn Roy Baron <bjorn3_gh(a)protonmail.com>
To: Benno Lossin <benno.lossin(a)proton.me>
To: Andreas Hindborg <a.hindborg(a)kernel.org>
To: Alice Ryhl <aliceryhl(a)google.com>
To: Trevor Gross <tmgross(a)umich.edu>
Cc: linux-kernel(a)vger.kernel.org
Cc: linux-fsdevel(a)vger.kernel.org
Cc: linux-mm(a)kvack.org
Cc: linux-riscv(a)lists.infradead.org
Cc: devicetree(a)vger.kernel.org
Cc: linux-arch(a)vger.kernel.org
Cc: linux-doc(a)vger.kernel.org
Cc: linux-kselftest(a)vger.kernel.org
Cc: alistair.francis(a)wdc.com
Cc: richard.henderson(a)linaro.org
Cc: jim.shu(a)sifive.com
Cc: andybnac(a)gmail.com
Cc: kito.cheng(a)sifive.com
Cc: charlie(a)rivosinc.com
Cc: atishp(a)rivosinc.com
Cc: evan(a)rivosinc.com
Cc: cleger(a)rivosinc.com
Cc: alexghiti(a)rivosinc.com
Cc: samitolvanen(a)google.com
Cc: broonie(a)kernel.org
Cc: rick.p.edgecombe(a)intel.com
Cc: rust-for-linux(a)vger.kernel.org
changelog
---------
v22:
- CONFIG_RISCV_USER_CFI was by default "n". With dual vdso support it is
default "y" (if toolchain supports it). Fixing build error due to
"-march=zicfiss" being picked in gcc-13 partially. gcc-13 only recognizes the
flag but not actually doing any codegen or recognizing instruction for zicfiss.
Change in v22 makes dependence on `-fcf-protection=full` compiler flag to
ensure that toolchain has support and then only CONFIG_RISCV_USER_CFI will be
visible in menuconfig.
- picked up tags and some cosmetic changes in commit message for dual vdso
patch.
v21:
- Fixing build errors due to changes in arch/riscv/include/asm/vdso.h
Using #ifdef instead of IS_ENABLED in arch/riscv/include/asm/vdso.h
vdso-cfi-offsets.h should be included only when CONFIG_RISCV_USER_CFI
is selected.
v20:
- rebased on v6.18-rc1.
- Added two vDSO support. If `CONFIG_RISCV_USER_CFI` is selected
two vDSOs are compiled (one for hardware prior to RVA23 and one
for RVA23 onwards). Kernel exposes RVA23 vDSO if hardware/cpu
implements zimop else exposes existing vDSO to userspace.
- default selection for `CONFIG_RISCV_USER_CFI` is "Yes".
- replaced "__ASSEMBLY__" with "__ASSEMBLER__"
v19:
- riscv_nousercfi was `int`. changed it to unsigned long.
Thanks to Alex Ghiti for reporting it. It was a bug.
- ELP is cleared on trap entry only when CONFIG_64BIT.
- restore ssp back on return to usermode was being done
before `riscv_v_context_nesting_end` on trap exit path.
If kernel shadow stack were enabled this would result in
kernel operating on user shadow stack and panic (as I found
in my testing of kcfi patch series). So fixed that.
v18:
- rebased on 6.16-rc1
- uprobe handling clears ELP in sstatus image in pt_regs
- vdso was missing shadow stack elf note for object files.
added that. Additional asm file for vdso needed the elf marker
flag. toolchain should complain if `-fcf-protection=full` and
marker is missing for object generated from asm file. Asked
toolchain folks to fix this. Although no reason to gate the merge
on that.
- Split up compile options for march and fcf-protection in vdso
Makefile
- CONFIG_RISCV_USER_CFI option is moved under "Kernel features" menu
Added `arch/riscv/configs/hardening.config` fragment which selects
CONFIG_RISCV_USER_CFI
v17:
- fixed warnings due to empty macros in usercfi.h (reported by alexg)
- fixed prefixes in commit titles reported by alexg
- took below uprobe with fcfi v2 patch from Zong Li and squashed it with
"riscv/traps: Introduce software check exception and uprobe handling"
https://lore.kernel.org/all/20250604093403.10916-1-zong.li@sifive.com/
v16:
- If FWFT is not implemented or returns error for shadow stack activation, then
no_usercfi is set to disable shadow stack. Although this should be picked up
by extension validation and activation. Fixed this bug for zicfilp and zicfiss
both. Thanks to Charlie Jenkins for reporting this.
- If toolchain doesn't support cfi, cfi kselftest shouldn't build. Suggested by
Charlie Jenkins.
- Default for CONFIG_RISCV_USER_CFI is set to no. Charlie/Atish suggested to
keep it off till we have more hardware availibility with RVA23 profile and
zimop/zcmop implemented. Else this will start breaking people's workflow
- Includes the fix if "!RV64 and !SBI" then definitions for FWFT in
asm-offsets.c error.
v15:
- Toolchain has been updated to include `-fcf-protection` flag. This
exists for x86 as well. Updated kernel patches to compile vDSO and
selftest to compile with `fcf-protection=full` flag.
- selecting CONFIG_RISCV_USERCFI selects CONFIG_RISCV_SBI.
- Patch to enable shadow stack for kernel wasn't hidden behind
CONFIG_RISCV_USERCFI and CONFIG_RISCV_SBI. fixed that.
v14:
- rebased on top of palmer/sbi-v3. Thus dropped clement's FWFT patches
Updated RISCV_ISA_EXT_XXXX in hwcap and hwprobe constants.
- Took Radim's suggestions on bitfields.
- Placed cfi_state at the end of thread_info block so that current situation
is not disturbed with respect to member fields of thread_info in single
cacheline.
v13:
- cpu_supports_shadow_stack/cpu_supports_indirect_br_lp_instr uses
riscv_has_extension_unlikely()
- uses nops(count) to create nop slide
- RISCV_ACQUIRE_BARRIER is not needed in `amo_user_shstk`. Removed it
- changed ternaries to simply use implicit casting to convert to bool.
- kernel command line allows to disable zicfilp and zicfiss independently.
updated kernel-parameters.txt.
- ptrace user abi for cfi uses bitmasks instead of bitfields. Added ptrace
kselftest.
- cosmetic and grammatical changes to documentation.
v12:
- It seems like I had accidently squashed arch agnostic indirect branch
tracking prctl and riscv implementation of those prctls. Split them again.
- set_shstk_status/set_indir_lp_status perform CSR writes only when CPU
support is available. As suggested by Zong Li.
- Some minor clean up in kselftests as suggested by Zong Li.
v11:
- patch "arch/riscv: compile vdso with landing pad" was unconditionally
selecting `_zicfilp` for vDSO compile. fixed that. Changed `lpad 1` to
to `lpad 0`.
v10:
- dropped "mm: helper `is_shadow_stack_vma` to check shadow stack vma". This patch
is not that interesting to this patch series for risc-v. There are instances in
arch directories where VM_SHADOW_STACK flag is anyways used. Dropping this patch
to expedite merging in riscv tree.
- Took suggestions from `Clement` on "riscv: zicfiss / zicfilp enumeration" to
validate presence of cfi based on config.
- Added a patch for vDSO to have `lpad 0`. I had omitted this earlier to make sure
we add single vdso object with cfi enabled. But a vdso object with scheme of
zero labeled landing pad is least common denominator and should work with all
objects of zero labeled as well as function-signature labeled objects.
v9:
- rebased on master (39a803b754d5 fix braino in "9p: fix ->rename_sem exclusion")
- dropped "mm: Introduce ARCH_HAS_USER_SHADOW_STACK" (master has it from arm64/gcs)
- dropped "prctl: arch-agnostic prctl for shadow stack" (master has it from arm64/gcs)
v8:
- rebased on palmer/for-next
- dropped samuel holland's `envcfg` context switch patches.
they are in parlmer/for-next
v7:
- Removed "riscv/Kconfig: enable HAVE_EXIT_THREAD for riscv"
Instead using `deactivate_mm` flow to clean up.
see here for more context
https://lore.kernel.org/all/20230908203655.543765-1-rick.p.edgecombe@intel.…
- Changed the header include in `kselftest`. Hopefully this fixes compile
issue faced by Zong Li at SiFive.
- Cleaned up an orphaned change to `mm/mmap.c` in below patch
"riscv/mm : ensure PROT_WRITE leads to VM_READ | VM_WRITE"
- Lock interfaces for shadow stack and indirect branch tracking expect arg == 0
Any future evolution of this interface should accordingly define how arg should
be setup.
- `mm/map.c` has an instance of using `VM_SHADOW_STACK`. Fixed it to use helper
`is_shadow_stack_vma`.
- Link to v6: https://lore.kernel.org/r/20241008-v5_user_cfi_series-v6-0-60d9fe073f37@riv…
v6:
- Picked up Samuel Holland's changes as is with `envcfg` placed in
`thread` instead of `thread_info`
- fixed unaligned newline escapes in kselftest
- cleaned up messages in kselftest and included test output in commit message
- fixed a bug in clone path reported by Zong Li
- fixed a build issue if CONFIG_RISCV_ISA_V is not selected
(this was introduced due to re-factoring signal context
management code)
v5:
- rebased on v6.12-rc1
- Fixed schema related issues in device tree file
- Fixed some of the documentation related issues in zicfilp/ss.rst
(style issues and added index)
- added `SHADOW_STACK_SET_MARKER` so that implementation can define base
of shadow stack.
- Fixed warnings on definitions added in usercfi.h when
CONFIG_RISCV_USER_CFI is not selected.
- Adopted context header based signal handling as proposed by Andy Chiu
- Added support for enabling kernel mode access to shadow stack using
FWFT
(https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/src/ext-firmware…)
- Link to v5: https://lore.kernel.org/r/20241001-v5_user_cfi_series-v1-0-3ba65b6e550f@riv…
(Note: I had an issue in my workflow due to which version number wasn't
picked up correctly while sending out patches)
v4:
- rebased on 6.11-rc6
- envcfg: Converged with Samuel Holland's patches for envcfg management on per-
thread basis.
- vma_is_shadow_stack is renamed to is_vma_shadow_stack
- picked up Mark Brown's `ARCH_HAS_USER_SHADOW_STACK` patch
- signal context: using extended context management to maintain compatibility.
- fixed `-Wmissing-prototypes` compiler warnings for prctl functions
- Documentation fixes and amending typos.
- Link to v4: https://lore.kernel.org/all/20240912231650.3740732-1-debug@rivosinc.com/
v3:
- envcfg
logic to pick up base envcfg had a bug where `ENVCFG_CBZE` could have been
picked on per task basis, even though CPU didn't implement it. Fixed in
this series.
- dt-bindings
As suggested, split into separate commit. fixed the messaging that spec is
in public review
- arch_is_shadow_stack change
arch_is_shadow_stack changed to vma_is_shadow_stack
- hwprobe
zicfiss / zicfilp if present will get enumerated in hwprobe
- selftests
As suggested, added object and binary filenames to .gitignore
Selftest binary anyways need to be compiled with cfi enabled compiler which
will make sure that landing pad and shadow stack are enabled. Thus removed
separate enable/disable tests. Cleaned up tests a bit.
- Link to v3: https://lore.kernel.org/lkml/20240403234054.2020347-1-debug@rivosinc.com/
v2:
- Using config `CONFIG_RISCV_USER_CFI`, kernel support for riscv control flow
integrity for user mode programs can be compiled in the kernel.
- Enabling of control flow integrity for user programs is left to user runtime
- This patch series introduces arch agnostic `prctls` to enable shadow stack
and indirect branch tracking. And implements them on riscv.
---
Changes in v22:
- Link to v21: https://lore.kernel.org/r/20251015-v5_user_cfi_series-v21-0-6a07856e90e7@ri…
Changes in v21:
- Link to v20: https://lore.kernel.org/r/20251013-v5_user_cfi_series-v20-0-b9de4be9912e@ri…
Changes in v20:
- Link to v19: https://lore.kernel.org/r/20250731-v5_user_cfi_series-v19-0-09b468d7beab@ri…
Changes in v19:
- Link to v18: https://lore.kernel.org/r/20250711-v5_user_cfi_series-v18-0-a8ee62f9f38e@ri…
Changes in v18:
- Link to v17: https://lore.kernel.org/r/20250604-v5_user_cfi_series-v17-0-4565c2cf869f@ri…
Changes in v17:
- Link to v16: https://lore.kernel.org/r/20250522-v5_user_cfi_series-v16-0-64f61a35eee7@ri…
Changes in v16:
- Link to v15: https://lore.kernel.org/r/20250502-v5_user_cfi_series-v15-0-914966471885@ri…
Changes in v15:
- changelog posted just below cover letter
- Link to v14: https://lore.kernel.org/r/20250429-v5_user_cfi_series-v14-0-5239410d012a@ri…
Changes in v14:
- changelog posted just below cover letter
- Link to v13: https://lore.kernel.org/r/20250424-v5_user_cfi_series-v13-0-971437de586a@ri…
Changes in v13:
- changelog posted just below cover letter
- Link to v12: https://lore.kernel.org/r/20250314-v5_user_cfi_series-v12-0-e51202b53138@ri…
Changes in v12:
- changelog posted just below cover letter
- Link to v11: https://lore.kernel.org/r/20250310-v5_user_cfi_series-v11-0-86b36cbfb910@ri…
Changes in v11:
- changelog posted just below cover letter
- Link to v10: https://lore.kernel.org/r/20250210-v5_user_cfi_series-v10-0-163dcfa31c60@ri…
---
Andy Chiu (1):
riscv: signal: abstract header saving for setup_sigcontext
Deepak Gupta (26):
mm: VM_SHADOW_STACK definition for riscv
dt-bindings: riscv: zicfilp and zicfiss in dt-bindings (extensions.yaml)
riscv: zicfiss / zicfilp enumeration
riscv: zicfiss / zicfilp extension csr and bit definitions
riscv: usercfi state for task and save/restore of CSR_SSP on trap entry/exit
riscv/mm : ensure PROT_WRITE leads to VM_READ | VM_WRITE
riscv/mm: manufacture shadow stack pte
riscv/mm: teach pte_mkwrite to manufacture shadow stack PTEs
riscv/mm: write protect and shadow stack
riscv/mm: Implement map_shadow_stack() syscall
riscv/shstk: If needed allocate a new shadow stack on clone
riscv: Implements arch agnostic shadow stack prctls
prctl: arch-agnostic prctl for indirect branch tracking
riscv: Implements arch agnostic indirect branch tracking prctls
riscv/traps: Introduce software check exception and uprobe handling
riscv/signal: save and restore of shadow stack for signal
riscv/kernel: update __show_regs to print shadow stack register
riscv/ptrace: riscv cfi status and state via ptrace and in core files
riscv/hwprobe: zicfilp / zicfiss enumeration in hwprobe
riscv: kernel command line option to opt out of user cfi
riscv: enable kernel access to shadow stack memory via FWFT sbi call
arch/riscv: dual vdso creation logic and select vdso based on hw
riscv: create a config for shadow stack and landing pad instr support
riscv: Documentation for landing pad / indirect branch tracking
riscv: Documentation for shadow stack on riscv
kselftest/riscv: kselftest for user mode cfi
Jim Shu (1):
arch/riscv: compile vdso with landing pad and shadow stack note
Documentation/admin-guide/kernel-parameters.txt | 8 +
Documentation/arch/riscv/index.rst | 2 +
Documentation/arch/riscv/zicfilp.rst | 115 +++++
Documentation/arch/riscv/zicfiss.rst | 179 +++++++
.../devicetree/bindings/riscv/extensions.yaml | 14 +
arch/riscv/Kconfig | 22 +
arch/riscv/Makefile | 8 +-
arch/riscv/configs/hardening.config | 4 +
arch/riscv/include/asm/asm-prototypes.h | 1 +
arch/riscv/include/asm/assembler.h | 44 ++
arch/riscv/include/asm/cpufeature.h | 12 +
arch/riscv/include/asm/csr.h | 16 +
arch/riscv/include/asm/entry-common.h | 2 +
arch/riscv/include/asm/hwcap.h | 2 +
arch/riscv/include/asm/mman.h | 26 +
arch/riscv/include/asm/mmu_context.h | 7 +
arch/riscv/include/asm/pgtable.h | 30 +-
arch/riscv/include/asm/processor.h | 1 +
arch/riscv/include/asm/thread_info.h | 3 +
arch/riscv/include/asm/usercfi.h | 95 ++++
arch/riscv/include/asm/vdso.h | 13 +-
arch/riscv/include/asm/vector.h | 3 +
arch/riscv/include/uapi/asm/hwprobe.h | 2 +
arch/riscv/include/uapi/asm/ptrace.h | 34 ++
arch/riscv/include/uapi/asm/sigcontext.h | 1 +
arch/riscv/kernel/Makefile | 2 +
arch/riscv/kernel/asm-offsets.c | 10 +
arch/riscv/kernel/cpufeature.c | 27 +
arch/riscv/kernel/entry.S | 38 ++
arch/riscv/kernel/head.S | 27 +
arch/riscv/kernel/process.c | 27 +-
arch/riscv/kernel/ptrace.c | 95 ++++
arch/riscv/kernel/signal.c | 148 +++++-
arch/riscv/kernel/sys_hwprobe.c | 2 +
arch/riscv/kernel/sys_riscv.c | 10 +
arch/riscv/kernel/traps.c | 54 ++
arch/riscv/kernel/usercfi.c | 545 +++++++++++++++++++++
arch/riscv/kernel/vdso.c | 7 +
arch/riscv/kernel/vdso/Makefile | 40 +-
arch/riscv/kernel/vdso/flush_icache.S | 4 +
arch/riscv/kernel/vdso/gen_vdso_offsets.sh | 4 +-
arch/riscv/kernel/vdso/getcpu.S | 4 +
arch/riscv/kernel/vdso/note.S | 3 +
arch/riscv/kernel/vdso/rt_sigreturn.S | 4 +
arch/riscv/kernel/vdso/sys_hwprobe.S | 4 +
arch/riscv/kernel/vdso/vgetrandom-chacha.S | 5 +-
arch/riscv/kernel/vdso_cfi/Makefile | 25 +
arch/riscv/kernel/vdso_cfi/vdso-cfi.S | 11 +
arch/riscv/mm/init.c | 2 +-
arch/riscv/mm/pgtable.c | 16 +
include/linux/cpu.h | 4 +
include/linux/mm.h | 7 +
include/uapi/linux/elf.h | 2 +
include/uapi/linux/prctl.h | 27 +
kernel/sys.c | 30 ++
tools/testing/selftests/riscv/Makefile | 2 +-
tools/testing/selftests/riscv/cfi/.gitignore | 3 +
tools/testing/selftests/riscv/cfi/Makefile | 16 +
tools/testing/selftests/riscv/cfi/cfi_rv_test.h | 82 ++++
tools/testing/selftests/riscv/cfi/riscv_cfi_test.c | 173 +++++++
tools/testing/selftests/riscv/cfi/shadowstack.c | 385 +++++++++++++++
tools/testing/selftests/riscv/cfi/shadowstack.h | 27 +
62 files changed, 2475 insertions(+), 41 deletions(-)
---
base-commit: 3a8660878839faadb4f1a6dd72c3179c1df56787
change-id: 20240930-v5_user_cfi_series-3dc332f8f5b2
--
- debug
v22: fixing build error due to -march=zicfiss being picked in gcc-13 and above
but not actually doing any codegen or recognizing instruction for zicfiss.
Change in v22 makes dependence on `-fcf-protection=full` compiler flag to
ensure that toolchain has support and then only CONFIG_RISCV_USER_CFI will be
visible in menuconfig.
v21: fixed build errors.
Basics and overview
===================
Software with larger attack surfaces (e.g. network facing apps like databases,
browsers or apps relying on browser runtimes) suffer from memory corruption
issues which can be utilized by attackers to bend control flow of the program
to eventually gain control (by making their payload executable). Attackers are
able to perform such attacks by leveraging call-sites which rely on indirect
calls or return sites which rely on obtaining return address from stack memory.
To mitigate such attacks, risc-v extension zicfilp enforces that all indirect
calls must land on a landing pad instruction `lpad` else cpu will raise software
check exception (a new cpu exception cause code on riscv).
Similarly for return flow, risc-v extension zicfiss extends architecture with
- `sspush` instruction to push return address on a shadow stack
- `sspopchk` instruction to pop return address from shadow stack
and compare with input operand (i.e. return address on stack)
- `sspopchk` to raise software check exception if comparision above
was a mismatch
- Protection mechanism using which shadow stack is not writeable via
regular store instructions
More information an details can be found at extensions github repo [1].
Equivalent to landing pad (zicfilp) on x86 is `ENDBRANCH` instruction in Intel
CET [3] and branch target identification (BTI) [4] on arm.
Similarly x86's Intel CET has shadow stack [5] and arm64 has guarded control
stack (GCS) [6] which are very similar to risc-v's zicfiss shadow stack.
x86 and arm64 support for user mode shadow stack is already in mainline.
Kernel awareness for user control flow integrity
================================================
This series picks up Samuel Holland's envcfg changes [2] as well. So if those are
being applied independently, they should be removed from this series.
Enabling:
In order to maintain compatibility and not break anything in user mode, kernel
doesn't enable control flow integrity cpu extensions on binary by default.
Instead exposes a prctl interface to enable, disable and lock the shadow stack
or landing pad feature for a task. This allows userspace (loader) to enumerate
if all objects in its address space are compiled with shadow stack and landing
pad support and accordingly enable the feature. Additionally if a subsequent
`dlopen` happens on a library, user mode can take a decision again to disable
the feature (if incoming library is not compiled with support) OR terminate the
task (if user mode policy is strict to have all objects in address space to be
compiled with control flow integirty cpu feature). prctl to enable shadow stack
results in allocating shadow stack from virtual memory and activating for user
address space. x86 and arm64 are also following same direction due to similar
reason(s).
clone/fork:
On clone and fork, cfi state for task is inherited by child. Shadow stack is
part of virtual memory and is a writeable memory from kernel perspective
(writeable via a restricted set of instructions aka shadow stack instructions)
Thus kernel changes ensure that this memory is converted into read-only when
fork/clone happens and COWed when fault is taken due to sspush, sspopchk or
ssamoswap. In case `CLONE_VM` is specified and shadow stack is to be enabled,
kernel will automatically allocate a shadow stack for that clone call.
map_shadow_stack:
x86 introduced `map_shadow_stack` system call to allow user space to explicitly
map shadow stack memory in its address space. It is useful to allocate shadow
for different contexts managed by a single thread (green threads or contexts)
risc-v implements this system call as well.
signal management:
If shadow stack is enabled for a task, kernel performs an asynchronous control
flow diversion to deliver the signal and eventually expects userspace to issue
sigreturn so that original execution can be resumed. Even though resume context
is prepared by kernel, it is in user space memory and is subject to memory
corruption and corruption bugs can be utilized by attacker in this race window
to perform arbitrary sigreturn and eventually bypass cfi mechanism.
Another issue is how to ensure that cfi related state on sigcontext area is not
trampled by legacy apps or apps compiled with old kernel headers.
In order to mitigate control-flow hijacting, kernel prepares a token and place
it on shadow stack before signal delivery and places address of token in
sigcontext structure. During sigreturn, kernel obtains address of token from
sigcontext struture, reads token from shadow stack and validates it and only
then allow sigreturn to succeed. Compatiblity issue is solved by adopting
dynamic sigcontext management introduced for vector extension. This series
re-factor the code little bit to allow future sigcontext management easy (as
proposed by Andy Chiu from SiFive)
config and compilation:
Introduce a new risc-v config option `CONFIG_RISCV_USER_CFI`. Selecting this
config option picks the kernel support for user control flow integrity. This
optin is presented only if toolchain has shadow stack and landing pad support.
And is on purpose guarded by toolchain support. Reason being that eventually
vDSO also needs to be compiled in with shadow stack and landing pad support.
vDSO compile patches are not included as of now because landing pad labeling
scheme is yet to settle for usermode runtime.
To get more information on kernel interactions with respect to
zicfilp and zicfiss, patch series adds documentation for
`zicfilp` and `zicfiss` in following:
Documentation/arch/riscv/zicfiss.rst
Documentation/arch/riscv/zicfilp.rst
How to test this series
=======================
Toolchain
---------
$ git clone git@github.com:sifive/riscv-gnu-toolchain.git -b cfi-dev
$ riscv-gnu-toolchain/configure --prefix=<path-to-where-to-build> --with-arch=rv64gc_zicfilp_zicfiss --enable-linux --disable-gdb --with-extra-multilib-test="rv64gc_zicfilp_zicfiss-lp64d:-static"
$ make -j$(nproc)
Qemu
----
Get the lastest qemu
$ cd qemu
$ mkdir build
$ cd build
$ ../configure --target-list=riscv64-softmmu
$ make -j$(nproc)
Opensbi
-------
$ git clone git@github.com:deepak0414/opensbi.git -b v6_cfi_spec_split_opensbi
$ make CROSS_COMPILE=<your riscv toolchain> -j$(nproc) PLATFORM=generic
Linux
-----
Running defconfig is fine. CFI is enabled by default if the toolchain
supports it.
$ make ARCH=riscv CROSS_COMPILE=<path-to-cfi-riscv-gnu-toolchain>/build/bin/riscv64-unknown-linux-gnu- -j$(nproc) defconfig
$ make ARCH=riscv CROSS_COMPILE=<path-to-cfi-riscv-gnu-toolchain>/build/bin/riscv64-unknown-linux-gnu- -j$(nproc)
Running
-------
Modify your qemu command to have:
-bios <path-to-cfi-opensbi>/build/platform/generic/firmware/fw_dynamic.bin
-cpu rv64,zicfilp=true,zicfiss=true,zimop=true,zcmop=true
References
==========
[1] - https://github.com/riscv/riscv-cfi
[2] - https://lore.kernel.org/all/20240814081126.956287-1-samuel.holland@sifive.c…
[3] - https://lwn.net/Articles/889475/
[4] - https://developer.arm.com/documentation/109576/0100/Branch-Target-Identific…
[5] - https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-i…
[6] - https://lwn.net/Articles/940403/
To: Thomas Gleixner <tglx(a)linutronix.de>
To: Ingo Molnar <mingo(a)redhat.com>
To: Borislav Petkov <bp(a)alien8.de>
To: Dave Hansen <dave.hansen(a)linux.intel.com>
To: x86(a)kernel.org
To: H. Peter Anvin <hpa(a)zytor.com>
To: Andrew Morton <akpm(a)linux-foundation.org>
To: Liam R. Howlett <Liam.Howlett(a)oracle.com>
To: Vlastimil Babka <vbabka(a)suse.cz>
To: Lorenzo Stoakes <lorenzo.stoakes(a)oracle.com>
To: Paul Walmsley <paul.walmsley(a)sifive.com>
To: Palmer Dabbelt <palmer(a)dabbelt.com>
To: Albert Ou <aou(a)eecs.berkeley.edu>
To: Conor Dooley <conor(a)kernel.org>
To: Rob Herring <robh(a)kernel.org>
To: Krzysztof Kozlowski <krzk+dt(a)kernel.org>
To: Arnd Bergmann <arnd(a)arndb.de>
To: Christian Brauner <brauner(a)kernel.org>
To: Peter Zijlstra <peterz(a)infradead.org>
To: Oleg Nesterov <oleg(a)redhat.com>
To: Eric Biederman <ebiederm(a)xmission.com>
To: Kees Cook <kees(a)kernel.org>
To: Jonathan Corbet <corbet(a)lwn.net>
To: Shuah Khan <shuah(a)kernel.org>
To: Jann Horn <jannh(a)google.com>
To: Conor Dooley <conor+dt(a)kernel.org>
To: Miguel Ojeda <ojeda(a)kernel.org>
To: Alex Gaynor <alex.gaynor(a)gmail.com>
To: Boqun Feng <boqun.feng(a)gmail.com>
To: Gary Guo <gary(a)garyguo.net>
To: Björn Roy Baron <bjorn3_gh(a)protonmail.com>
To: Benno Lossin <benno.lossin(a)proton.me>
To: Andreas Hindborg <a.hindborg(a)kernel.org>
To: Alice Ryhl <aliceryhl(a)google.com>
To: Trevor Gross <tmgross(a)umich.edu>
Cc: linux-kernel(a)vger.kernel.org
Cc: linux-fsdevel(a)vger.kernel.org
Cc: linux-mm(a)kvack.org
Cc: linux-riscv(a)lists.infradead.org
Cc: devicetree(a)vger.kernel.org
Cc: linux-arch(a)vger.kernel.org
Cc: linux-doc(a)vger.kernel.org
Cc: linux-kselftest(a)vger.kernel.org
Cc: alistair.francis(a)wdc.com
Cc: richard.henderson(a)linaro.org
Cc: jim.shu(a)sifive.com
Cc: andybnac(a)gmail.com
Cc: kito.cheng(a)sifive.com
Cc: charlie(a)rivosinc.com
Cc: atishp(a)rivosinc.com
Cc: evan(a)rivosinc.com
Cc: cleger(a)rivosinc.com
Cc: alexghiti(a)rivosinc.com
Cc: samitolvanen(a)google.com
Cc: broonie(a)kernel.org
Cc: rick.p.edgecombe(a)intel.com
Cc: rust-for-linux(a)vger.kernel.org
changelog
---------
v22:
- CONFIG_RISCV_USER_CFI was by default "n". With dual vdso support it is
default "y" (if toolchain supports it). Fixing build error due to
"-march=zicfiss" being picked in gcc-13 partially. gcc-13 only recognizes the
flag but not actually doing any codegen or recognizing instruction for zicfiss.
Change in v22 makes dependence on `-fcf-protection=full` compiler flag to
ensure that toolchain has support and then only CONFIG_RISCV_USER_CFI will be
visible in menuconfig.
- picked up tags and some cosmetic changes in commit message for dual vdso
patch.
v21:
- Fixing build errors due to changes in arch/riscv/include/asm/vdso.h
Using #ifdef instead of IS_ENABLED in arch/riscv/include/asm/vdso.h
vdso-cfi-offsets.h should be included only when CONFIG_RISCV_USER_CFI
is selected.
v20:
- rebased on v6.18-rc1.
- Added two vDSO support. If `CONFIG_RISCV_USER_CFI` is selected
two vDSOs are compiled (one for hardware prior to RVA23 and one
for RVA23 onwards). Kernel exposes RVA23 vDSO if hardware/cpu
implements zimop else exposes existing vDSO to userspace.
- default selection for `CONFIG_RISCV_USER_CFI` is "Yes".
- replaced "__ASSEMBLY__" with "__ASSEMBLER__"
v19:
- riscv_nousercfi was `int`. changed it to unsigned long.
Thanks to Alex Ghiti for reporting it. It was a bug.
- ELP is cleared on trap entry only when CONFIG_64BIT.
- restore ssp back on return to usermode was being done
before `riscv_v_context_nesting_end` on trap exit path.
If kernel shadow stack were enabled this would result in
kernel operating on user shadow stack and panic (as I found
in my testing of kcfi patch series). So fixed that.
v18:
- rebased on 6.16-rc1
- uprobe handling clears ELP in sstatus image in pt_regs
- vdso was missing shadow stack elf note for object files.
added that. Additional asm file for vdso needed the elf marker
flag. toolchain should complain if `-fcf-protection=full` and
marker is missing for object generated from asm file. Asked
toolchain folks to fix this. Although no reason to gate the merge
on that.
- Split up compile options for march and fcf-protection in vdso
Makefile
- CONFIG_RISCV_USER_CFI option is moved under "Kernel features" menu
Added `arch/riscv/configs/hardening.config` fragment which selects
CONFIG_RISCV_USER_CFI
v17:
- fixed warnings due to empty macros in usercfi.h (reported by alexg)
- fixed prefixes in commit titles reported by alexg
- took below uprobe with fcfi v2 patch from Zong Li and squashed it with
"riscv/traps: Introduce software check exception and uprobe handling"
https://lore.kernel.org/all/20250604093403.10916-1-zong.li@sifive.com/
v16:
- If FWFT is not implemented or returns error for shadow stack activation, then
no_usercfi is set to disable shadow stack. Although this should be picked up
by extension validation and activation. Fixed this bug for zicfilp and zicfiss
both. Thanks to Charlie Jenkins for reporting this.
- If toolchain doesn't support cfi, cfi kselftest shouldn't build. Suggested by
Charlie Jenkins.
- Default for CONFIG_RISCV_USER_CFI is set to no. Charlie/Atish suggested to
keep it off till we have more hardware availibility with RVA23 profile and
zimop/zcmop implemented. Else this will start breaking people's workflow
- Includes the fix if "!RV64 and !SBI" then definitions for FWFT in
asm-offsets.c error.
v15:
- Toolchain has been updated to include `-fcf-protection` flag. This
exists for x86 as well. Updated kernel patches to compile vDSO and
selftest to compile with `fcf-protection=full` flag.
- selecting CONFIG_RISCV_USERCFI selects CONFIG_RISCV_SBI.
- Patch to enable shadow stack for kernel wasn't hidden behind
CONFIG_RISCV_USERCFI and CONFIG_RISCV_SBI. fixed that.
v14:
- rebased on top of palmer/sbi-v3. Thus dropped clement's FWFT patches
Updated RISCV_ISA_EXT_XXXX in hwcap and hwprobe constants.
- Took Radim's suggestions on bitfields.
- Placed cfi_state at the end of thread_info block so that current situation
is not disturbed with respect to member fields of thread_info in single
cacheline.
v13:
- cpu_supports_shadow_stack/cpu_supports_indirect_br_lp_instr uses
riscv_has_extension_unlikely()
- uses nops(count) to create nop slide
- RISCV_ACQUIRE_BARRIER is not needed in `amo_user_shstk`. Removed it
- changed ternaries to simply use implicit casting to convert to bool.
- kernel command line allows to disable zicfilp and zicfiss independently.
updated kernel-parameters.txt.
- ptrace user abi for cfi uses bitmasks instead of bitfields. Added ptrace
kselftest.
- cosmetic and grammatical changes to documentation.
v12:
- It seems like I had accidently squashed arch agnostic indirect branch
tracking prctl and riscv implementation of those prctls. Split them again.
- set_shstk_status/set_indir_lp_status perform CSR writes only when CPU
support is available. As suggested by Zong Li.
- Some minor clean up in kselftests as suggested by Zong Li.
v11:
- patch "arch/riscv: compile vdso with landing pad" was unconditionally
selecting `_zicfilp` for vDSO compile. fixed that. Changed `lpad 1` to
to `lpad 0`.
v10:
- dropped "mm: helper `is_shadow_stack_vma` to check shadow stack vma". This patch
is not that interesting to this patch series for risc-v. There are instances in
arch directories where VM_SHADOW_STACK flag is anyways used. Dropping this patch
to expedite merging in riscv tree.
- Took suggestions from `Clement` on "riscv: zicfiss / zicfilp enumeration" to
validate presence of cfi based on config.
- Added a patch for vDSO to have `lpad 0`. I had omitted this earlier to make sure
we add single vdso object with cfi enabled. But a vdso object with scheme of
zero labeled landing pad is least common denominator and should work with all
objects of zero labeled as well as function-signature labeled objects.
v9:
- rebased on master (39a803b754d5 fix braino in "9p: fix ->rename_sem exclusion")
- dropped "mm: Introduce ARCH_HAS_USER_SHADOW_STACK" (master has it from arm64/gcs)
- dropped "prctl: arch-agnostic prctl for shadow stack" (master has it from arm64/gcs)
v8:
- rebased on palmer/for-next
- dropped samuel holland's `envcfg` context switch patches.
they are in parlmer/for-next
v7:
- Removed "riscv/Kconfig: enable HAVE_EXIT_THREAD for riscv"
Instead using `deactivate_mm` flow to clean up.
see here for more context
https://lore.kernel.org/all/20230908203655.543765-1-rick.p.edgecombe@intel.…
- Changed the header include in `kselftest`. Hopefully this fixes compile
issue faced by Zong Li at SiFive.
- Cleaned up an orphaned change to `mm/mmap.c` in below patch
"riscv/mm : ensure PROT_WRITE leads to VM_READ | VM_WRITE"
- Lock interfaces for shadow stack and indirect branch tracking expect arg == 0
Any future evolution of this interface should accordingly define how arg should
be setup.
- `mm/map.c` has an instance of using `VM_SHADOW_STACK`. Fixed it to use helper
`is_shadow_stack_vma`.
- Link to v6: https://lore.kernel.org/r/20241008-v5_user_cfi_series-v6-0-60d9fe073f37@riv…
v6:
- Picked up Samuel Holland's changes as is with `envcfg` placed in
`thread` instead of `thread_info`
- fixed unaligned newline escapes in kselftest
- cleaned up messages in kselftest and included test output in commit message
- fixed a bug in clone path reported by Zong Li
- fixed a build issue if CONFIG_RISCV_ISA_V is not selected
(this was introduced due to re-factoring signal context
management code)
v5:
- rebased on v6.12-rc1
- Fixed schema related issues in device tree file
- Fixed some of the documentation related issues in zicfilp/ss.rst
(style issues and added index)
- added `SHADOW_STACK_SET_MARKER` so that implementation can define base
of shadow stack.
- Fixed warnings on definitions added in usercfi.h when
CONFIG_RISCV_USER_CFI is not selected.
- Adopted context header based signal handling as proposed by Andy Chiu
- Added support for enabling kernel mode access to shadow stack using
FWFT
(https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/src/ext-firmware…)
- Link to v5: https://lore.kernel.org/r/20241001-v5_user_cfi_series-v1-0-3ba65b6e550f@riv…
(Note: I had an issue in my workflow due to which version number wasn't
picked up correctly while sending out patches)
v4:
- rebased on 6.11-rc6
- envcfg: Converged with Samuel Holland's patches for envcfg management on per-
thread basis.
- vma_is_shadow_stack is renamed to is_vma_shadow_stack
- picked up Mark Brown's `ARCH_HAS_USER_SHADOW_STACK` patch
- signal context: using extended context management to maintain compatibility.
- fixed `-Wmissing-prototypes` compiler warnings for prctl functions
- Documentation fixes and amending typos.
- Link to v4: https://lore.kernel.org/all/20240912231650.3740732-1-debug@rivosinc.com/
v3:
- envcfg
logic to pick up base envcfg had a bug where `ENVCFG_CBZE` could have been
picked on per task basis, even though CPU didn't implement it. Fixed in
this series.
- dt-bindings
As suggested, split into separate commit. fixed the messaging that spec is
in public review
- arch_is_shadow_stack change
arch_is_shadow_stack changed to vma_is_shadow_stack
- hwprobe
zicfiss / zicfilp if present will get enumerated in hwprobe
- selftests
As suggested, added object and binary filenames to .gitignore
Selftest binary anyways need to be compiled with cfi enabled compiler which
will make sure that landing pad and shadow stack are enabled. Thus removed
separate enable/disable tests. Cleaned up tests a bit.
- Link to v3: https://lore.kernel.org/lkml/20240403234054.2020347-1-debug@rivosinc.com/
v2:
- Using config `CONFIG_RISCV_USER_CFI`, kernel support for riscv control flow
integrity for user mode programs can be compiled in the kernel.
- Enabling of control flow integrity for user programs is left to user runtime
- This patch series introduces arch agnostic `prctls` to enable shadow stack
and indirect branch tracking. And implements them on riscv.
---
Changes in v22:
- Link to v21: https://lore.kernel.org/r/20251015-v5_user_cfi_series-v21-0-6a07856e90e7@ri…
Changes in v21:
- Link to v20: https://lore.kernel.org/r/20251013-v5_user_cfi_series-v20-0-b9de4be9912e@ri…
Changes in v20:
- Link to v19: https://lore.kernel.org/r/20250731-v5_user_cfi_series-v19-0-09b468d7beab@ri…
Changes in v19:
- Link to v18: https://lore.kernel.org/r/20250711-v5_user_cfi_series-v18-0-a8ee62f9f38e@ri…
Changes in v18:
- Link to v17: https://lore.kernel.org/r/20250604-v5_user_cfi_series-v17-0-4565c2cf869f@ri…
Changes in v17:
- Link to v16: https://lore.kernel.org/r/20250522-v5_user_cfi_series-v16-0-64f61a35eee7@ri…
Changes in v16:
- Link to v15: https://lore.kernel.org/r/20250502-v5_user_cfi_series-v15-0-914966471885@ri…
Changes in v15:
- changelog posted just below cover letter
- Link to v14: https://lore.kernel.org/r/20250429-v5_user_cfi_series-v14-0-5239410d012a@ri…
Changes in v14:
- changelog posted just below cover letter
- Link to v13: https://lore.kernel.org/r/20250424-v5_user_cfi_series-v13-0-971437de586a@ri…
Changes in v13:
- changelog posted just below cover letter
- Link to v12: https://lore.kernel.org/r/20250314-v5_user_cfi_series-v12-0-e51202b53138@ri…
Changes in v12:
- changelog posted just below cover letter
- Link to v11: https://lore.kernel.org/r/20250310-v5_user_cfi_series-v11-0-86b36cbfb910@ri…
Changes in v11:
- changelog posted just below cover letter
- Link to v10: https://lore.kernel.org/r/20250210-v5_user_cfi_series-v10-0-163dcfa31c60@ri…
---
Andy Chiu (1):
riscv: signal: abstract header saving for setup_sigcontext
Deepak Gupta (26):
mm: VM_SHADOW_STACK definition for riscv
dt-bindings: riscv: zicfilp and zicfiss in dt-bindings (extensions.yaml)
riscv: zicfiss / zicfilp enumeration
riscv: zicfiss / zicfilp extension csr and bit definitions
riscv: usercfi state for task and save/restore of CSR_SSP on trap entry/exit
riscv/mm : ensure PROT_WRITE leads to VM_READ | VM_WRITE
riscv/mm: manufacture shadow stack pte
riscv/mm: teach pte_mkwrite to manufacture shadow stack PTEs
riscv/mm: write protect and shadow stack
riscv/mm: Implement map_shadow_stack() syscall
riscv/shstk: If needed allocate a new shadow stack on clone
riscv: Implements arch agnostic shadow stack prctls
prctl: arch-agnostic prctl for indirect branch tracking
riscv: Implements arch agnostic indirect branch tracking prctls
riscv/traps: Introduce software check exception and uprobe handling
riscv/signal: save and restore of shadow stack for signal
riscv/kernel: update __show_regs to print shadow stack register
riscv/ptrace: riscv cfi status and state via ptrace and in core files
riscv/hwprobe: zicfilp / zicfiss enumeration in hwprobe
riscv: kernel command line option to opt out of user cfi
riscv: enable kernel access to shadow stack memory via FWFT sbi call
arch/riscv: dual vdso creation logic and select vdso based on hw
riscv: create a config for shadow stack and landing pad instr support
riscv: Documentation for landing pad / indirect branch tracking
riscv: Documentation for shadow stack on riscv
kselftest/riscv: kselftest for user mode cfi
Jim Shu (1):
arch/riscv: compile vdso with landing pad and shadow stack note
Documentation/admin-guide/kernel-parameters.txt | 8 +
Documentation/arch/riscv/index.rst | 2 +
Documentation/arch/riscv/zicfilp.rst | 115 +++++
Documentation/arch/riscv/zicfiss.rst | 179 +++++++
.../devicetree/bindings/riscv/extensions.yaml | 14 +
arch/riscv/Kconfig | 22 +
arch/riscv/Makefile | 8 +-
arch/riscv/configs/hardening.config | 4 +
arch/riscv/include/asm/asm-prototypes.h | 1 +
arch/riscv/include/asm/assembler.h | 44 ++
arch/riscv/include/asm/cpufeature.h | 12 +
arch/riscv/include/asm/csr.h | 16 +
arch/riscv/include/asm/entry-common.h | 2 +
arch/riscv/include/asm/hwcap.h | 2 +
arch/riscv/include/asm/mman.h | 26 +
arch/riscv/include/asm/mmu_context.h | 7 +
arch/riscv/include/asm/pgtable.h | 30 +-
arch/riscv/include/asm/processor.h | 1 +
arch/riscv/include/asm/thread_info.h | 3 +
arch/riscv/include/asm/usercfi.h | 95 ++++
arch/riscv/include/asm/vdso.h | 13 +-
arch/riscv/include/asm/vector.h | 3 +
arch/riscv/include/uapi/asm/hwprobe.h | 2 +
arch/riscv/include/uapi/asm/ptrace.h | 34 ++
arch/riscv/include/uapi/asm/sigcontext.h | 1 +
arch/riscv/kernel/Makefile | 2 +
arch/riscv/kernel/asm-offsets.c | 10 +
arch/riscv/kernel/cpufeature.c | 27 +
arch/riscv/kernel/entry.S | 38 ++
arch/riscv/kernel/head.S | 27 +
arch/riscv/kernel/process.c | 27 +-
arch/riscv/kernel/ptrace.c | 95 ++++
arch/riscv/kernel/signal.c | 148 +++++-
arch/riscv/kernel/sys_hwprobe.c | 2 +
arch/riscv/kernel/sys_riscv.c | 10 +
arch/riscv/kernel/traps.c | 54 ++
arch/riscv/kernel/usercfi.c | 545 +++++++++++++++++++++
arch/riscv/kernel/vdso.c | 7 +
arch/riscv/kernel/vdso/Makefile | 40 +-
arch/riscv/kernel/vdso/flush_icache.S | 4 +
arch/riscv/kernel/vdso/gen_vdso_offsets.sh | 4 +-
arch/riscv/kernel/vdso/getcpu.S | 4 +
arch/riscv/kernel/vdso/note.S | 3 +
arch/riscv/kernel/vdso/rt_sigreturn.S | 4 +
arch/riscv/kernel/vdso/sys_hwprobe.S | 4 +
arch/riscv/kernel/vdso/vgetrandom-chacha.S | 5 +-
arch/riscv/kernel/vdso_cfi/Makefile | 25 +
arch/riscv/kernel/vdso_cfi/vdso-cfi.S | 11 +
arch/riscv/mm/init.c | 2 +-
arch/riscv/mm/pgtable.c | 16 +
include/linux/cpu.h | 4 +
include/linux/mm.h | 7 +
include/uapi/linux/elf.h | 2 +
include/uapi/linux/prctl.h | 27 +
kernel/sys.c | 30 ++
tools/testing/selftests/riscv/Makefile | 2 +-
tools/testing/selftests/riscv/cfi/.gitignore | 3 +
tools/testing/selftests/riscv/cfi/Makefile | 16 +
tools/testing/selftests/riscv/cfi/cfi_rv_test.h | 82 ++++
tools/testing/selftests/riscv/cfi/riscv_cfi_test.c | 173 +++++++
tools/testing/selftests/riscv/cfi/shadowstack.c | 385 +++++++++++++++
tools/testing/selftests/riscv/cfi/shadowstack.h | 27 +
62 files changed, 2475 insertions(+), 41 deletions(-)
---
base-commit: 3a8660878839faadb4f1a6dd72c3179c1df56787
change-id: 20240930-v5_user_cfi_series-3dc332f8f5b2
--
- debug
The core scheduling is for smt enabled cpus. It is not returns
failure and gives plenty of error messages and not clearly points
to the smt issue if the smt is disabled. It just mention
"not a core sched system" and many other messages. For example:
Not a core sched system
tid=210574, / tgid=210574 / pgid=210574: ffffffffffffffff
Not a core sched system
tid=210575, / tgid=210575 / pgid=210574: ffffffffffffffff
Not a core sched system
tid=210577, / tgid=210575 / pgid=210574: ffffffffffffffff
(similar things many other times)
In this patch, the test will first read /sys/devices/system/cpu/smt/active,
if the file cannot be opened or its value is 0, the test is skipped with
an explanatory message. This helps developers understand why it is skipped
and avoids unnecessary attention when running the full selftest suite.
Cc: stable(a)vger.kernel.org
Signed-off-by: Yifei Liu <yifei.l.liu(a)oracle.com>
---
tools/testing/selftests/sched/cs_prctl_test.c | 23 ++++++++++++++++++-
1 file changed, 22 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/sched/cs_prctl_test.c b/tools/testing/selftests/sched/cs_prctl_test.c
index 52d97fae4dbd..7ce8088cde6a 100644
--- a/tools/testing/selftests/sched/cs_prctl_test.c
+++ b/tools/testing/selftests/sched/cs_prctl_test.c
@@ -32,6 +32,8 @@
#include <stdlib.h>
#include <string.h>
+#include "../kselftest.h"
+
#if __GLIBC_PREREQ(2, 30) == 0
#include <sys/syscall.h>
static pid_t gettid(void)
@@ -109,6 +111,22 @@ static void handle_usage(int rc, char *msg)
exit(rc);
}
+int check_smt(void)
+{
+ int c = 0;
+ FILE *file;
+
+ file = fopen("/sys/devices/system/cpu/smt/active", "r");
+ if (!file)
+ return 0;
+ c = fgetc(file) - 0x30;
+ fclose(file);
+ if (c == 0 || c == 1)
+ return c;
+ //if fgetc returns EOF or -1 for correupted files, return 0.
+ return 0;
+}
+
static unsigned long get_cs_cookie(int pid)
{
unsigned long long cookie;
@@ -271,7 +289,10 @@ int main(int argc, char *argv[])
delay = -1;
srand(time(NULL));
-
+ if (!check_smt()) {
+ ksft_test_result_skip("smt not enabled\n");
+ return 1;
+ }
/* put into separate process group */
if (setpgid(0, 0) != 0)
handle_error("process group");
--
2.50.1
From: Chia-Yu Chang <chia-yu.chang(a)nokia-bell-labs.com>
Hello,
Plesae find the v4 AccECN case handling patch series, which covers
several excpetional case handling of Accurate ECN spec (RFC9768),
adds new identifiers to be used by CC modules, adds ecn_delta into
rate_sample, and keeps the ACE counter for computation, etc.
This patch series is part of the full AccECN patch series, which is available at
https://github.com/L4STeam/linux-net-next/commits/upstream_l4steam/
Best regards,
Chia-Yu
---
v4:
- Add previous #13 in v2 back after dicussion with the RFC author.
- Add TCP_ACCECN_OPTION_PERSIST to tcp_ecn_option sysctl to ignore AccECN fallback policy on sending AccECN option.
v3:
- Add additional min() check if pkts_acked_ewma is not initialized in #1.
- Change TCP_CONG_WANTS_ECT_1 into individual flag add helper function INET_ECN_xmit_wants_ect_1() in #3.
- Add empty line between variable declarations and code in #4.
- Update commit message to fix old AccECN commits in #5.
- Remove unnecessary brackets in #10.
- Move patch #3 in v2 to a later Prague patch serise and remove patch #13 in v2.
---
Chia-Yu Chang (11):
tcp: L4S ECT(1) identifier and NEEDS_ACCECN for CC modules
tcp: disable RFC3168 fallback identifier for CC modules
tcp: accecn: handle unexpected AccECN negotiation feedback
tcp: accecn: retransmit downgraded SYN in AccECN negotiation
tcp: move increment of num_retrans
tcp: accecn: retransmit SYN/ACK without AccECN option or non-AccECN
SYN/ACK
tcp: accecn: unset ECT if receive or send ACE=0 in AccECN negotiaion
tcp: accecn: fallback outgoing half link to non-AccECN
tcp: accecn: verify ACE counter in 1st ACK after AccECN negotiation
tcp: accecn: detect loss ACK w/ AccECN option and add
TCP_ACCECN_OPTION_PERSIST
tcp: accecn: enable AccECN
Ilpo Järvinen (2):
tcp: try to avoid safer when ACKs are thinned
gro: flushing when CWR is set negatively affects AccECN
Documentation/networking/ip-sysctl.rst | 4 +-
.../networking/net_cachelines/tcp_sock.rst | 1 +
include/linux/tcp.h | 4 +-
include/net/inet_ecn.h | 20 +++-
include/net/tcp.h | 32 ++++++-
include/net/tcp_ecn.h | 92 ++++++++++++++-----
net/ipv4/sysctl_net_ipv4.c | 4 +-
net/ipv4/tcp.c | 2 +
net/ipv4/tcp_cong.c | 10 +-
net/ipv4/tcp_input.c | 58 ++++++++++--
net/ipv4/tcp_minisocks.c | 40 +++++---
net/ipv4/tcp_offload.c | 3 +-
net/ipv4/tcp_output.c | 42 ++++++---
13 files changed, 241 insertions(+), 71 deletions(-)
--
2.34.1
Running this test on a system with only one CPU is not a recipe for
success. However, there's no clear-cut reason why it absolutely
shouldn't work, so the test shouldn't completely reject such a platform.
At present, the *3/4 calculation will return zero on these platforms and
the test fails. So, instead just skip that calculation.
Suggested-by: Sean Christopherson <seanjc(a)google.com>
Signed-off-by: Brendan Jackman <jackmanb(a)google.com>
---
tools/testing/selftests/kvm/mmu_stress_test.c | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/kvm/mmu_stress_test.c b/tools/testing/selftests/kvm/mmu_stress_test.c
index 6a437d2be9fa444b34c2a73308a9d1c7ff3cc4f5..b5bd6fbad32a9ad5247a52ecf811b29293763e2e 100644
--- a/tools/testing/selftests/kvm/mmu_stress_test.c
+++ b/tools/testing/selftests/kvm/mmu_stress_test.c
@@ -263,8 +263,10 @@ static void calc_default_nr_vcpus(void)
TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)",
errno, strerror(errno));
- nr_vcpus = CPU_COUNT(&possible_mask) * 3/4;
+ nr_vcpus = CPU_COUNT(&possible_mask);
TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?");
+ if (nr_vcpus >= 2)
+ nr_vcpus = nr_vcpus * 3/4;
}
int main(int argc, char *argv[])
---
base-commit: 6b36119b94d0b2bb8cea9d512017efafd461d6ac
change-id: 20251007-b4-kvm-mmu-stresstest-1proc-e6157c13787a
Best regards,
--
Brendan Jackman <jackmanb(a)google.com>
This series introduces NUMA-aware memory placement support for KVM guests
with guest_memfd memory backends. It builds upon Fuad Tabba's work (V17)
that enabled host-mapping for guest_memfd memory [1] and can be applied
directly applied on KVM tree [2] (branch kvm-next, base commit: a6ad5413,
Merge branch 'guest-memfd-mmap' into HEAD)
== Background ==
KVM's guest-memfd memory backend currently lacks support for NUMA policy
enforcement, causing guest memory allocations to be distributed across host
nodes according to kernel's default behavior, irrespective of any policy
specified by the VMM. This limitation arises because conventional userspace
NUMA control mechanisms like mbind(2) don't work since the memory isn't
directly mapped to userspace when allocations occur.
Fuad's work [1] provides the necessary mmap capability, and this series
leverages it to enable mbind(2).
== Implementation ==
This series implements proper NUMA policy support for guest-memfd by:
1. Adding mempolicy-aware allocation APIs to the filemap layer.
2. Introducing custom inodes (via a dedicated slab-allocated inode cache,
kvm_gmem_inode_info) to store NUMA policy and metadata for guest memory.
3. Implementing get/set_policy vm_ops in guest_memfd to support NUMA
policy.
With these changes, VMMs can now control guest memory placement by mapping
guest_memfd file descriptor and using mbind(2) to specify:
- Policy modes: default, bind, interleave, or preferred
- Host NUMA nodes: List of target nodes for memory allocation
These Policies affect only future allocations and do not migrate existing
memory. This matches mbind(2)'s default behavior which affects only new
allocations unless overridden with MPOL_MF_MOVE/MPOL_MF_MOVE_ALL flags (Not
supported for guest_memfd as it is unmovable by design).
== Upstream Plan ==
Phased approach as per David's guest_memfd extension overview [3] and
community calls [4]:
Phase 1 (this series):
1. Focuses on shared guest_memfd support (non-CoCo VMs).
2. Builds on Fuad's host-mapping work [1].
Phase2 (future work):
1. NUMA support for private guest_memfd (CoCo VMs).
2. Depends on SNP in-place conversion support [5].
This series provides a clean integration path for NUMA-aware memory
management for guest_memfd and lays the groundwork for future confidential
computing NUMA capabilities.
Thanks,
Shivank
== Changelog ==
- v1,v2: Extended the KVM_CREATE_GUEST_MEMFD IOCTL to pass mempolicy.
- v3: Introduced fbind() syscall for VMM memory-placement configuration.
- v4-v6: Current approach using shared_policy support and vm_ops (based on
suggestions from David [6] and guest_memfd bi-weekly upstream
call discussion [7]).
- v7: Use inodes to store NUMA policy instead of file [8].
- v8: Rebase on top of Fuad's V12: Host mmaping for guest_memfd memory.
- v9: Rebase on top of Fuad's V13 and incorporate review comments
- V10: Rebase on top of Fuad's V17. Use latest guest_memfd inode patch
from Ackerley (with David's review comments). Use newer kmem_cache_create()
API variant with arg parameter (Vlastimil)
- V11: Rebase on kvm-next, remove RFC tag, use Ackerley's latest patch
and fix a rcu race bug during kvm module unload.
[1] https://lore.kernel.org/all/20250729225455.670324-1-seanjc@google.com
[2] https://git.kernel.org/pub/scm/virt/kvm/kvm.git/log/?h=next
[3] https://lore.kernel.org/all/c1c9591d-218a-495c-957b-ba356c8f8e09@redhat.com
[4] https://docs.google.com/document/d/1M6766BzdY1Lhk7LiR5IqVR8B8mG3cr-cxTxOrAo…
[5] https://lore.kernel.org/all/20250613005400.3694904-1-michael.roth@amd.com
[6] https://lore.kernel.org/all/6fbef654-36e2-4be5-906e-2a648a845278@redhat.com
[7] https://lore.kernel.org/all/2b77e055-98ac-43a1-a7ad-9f9065d7f38f@amd.com
[8] https://lore.kernel.org/all/diqzbjumm167.fsf@ackerleytng-ctop.c.googlers.com
Ackerley Tng (1):
KVM: guest_memfd: Use guest mem inodes instead of anonymous inodes
Matthew Wilcox (Oracle) (2):
mm/filemap: Add NUMA mempolicy support to filemap_alloc_folio()
mm/filemap: Extend __filemap_get_folio() to support NUMA memory
policies
Shivank Garg (4):
mm/mempolicy: Export memory policy symbols
KVM: guest_memfd: Add slab-allocated inode cache
KVM: guest_memfd: Enforce NUMA mempolicy using shared policy
KVM: guest_memfd: selftests: Add tests for mmap and NUMA policy
support
fs/bcachefs/fs-io-buffered.c | 2 +-
fs/btrfs/compression.c | 4 +-
fs/btrfs/verity.c | 2 +-
fs/erofs/zdata.c | 2 +-
fs/f2fs/compress.c | 2 +-
include/linux/pagemap.h | 18 +-
include/uapi/linux/magic.h | 1 +
mm/filemap.c | 23 +-
mm/mempolicy.c | 6 +
mm/readahead.c | 2 +-
tools/testing/selftests/kvm/Makefile.kvm | 1 +
.../testing/selftests/kvm/guest_memfd_test.c | 121 ++++++++
virt/kvm/guest_memfd.c | 262 ++++++++++++++++--
virt/kvm/kvm_main.c | 7 +-
virt/kvm/kvm_mm.h | 9 +-
15 files changed, 412 insertions(+), 50 deletions(-)
--
2.43.0
---
== Earlier Postings ==
v10: https://lore.kernel.org/all/20250811090605.16057-2-shivankg@amd.com
v9: https://lore.kernel.org/all/20250713174339.13981-2-shivankg@amd.com
v8: https://lore.kernel.org/all/20250618112935.7629-1-shivankg@amd.com
v7: https://lore.kernel.org/all/20250408112402.181574-1-shivankg@amd.com
v6: https://lore.kernel.org/all/20250226082549.6034-1-shivankg@amd.com
v5: https://lore.kernel.org/all/20250219101559.414878-1-shivankg@amd.com
v4: https://lore.kernel.org/all/20250210063227.41125-1-shivankg@amd.com
v3: https://lore.kernel.org/all/20241105164549.154700-1-shivankg@amd.com
v2: https://lore.kernel.org/all/20240919094438.10987-1-shivankg@amd.com
v1: https://lore.kernel.org/all/20240916165743.201087-1-shivankg@amd.com
When mapping guest ITS collections, vgic_lpi_stress iterates over
integers in the range [0, nr_cpus), passing them as the target_addr
parameter to its_send_mapc_cmd(). These integers correspond to the
selftest userspace vCPU IDs that we intend to map each ITS collection
to.
However, its_encode_target() within its_send_mapc_cmd() expects a
vCPU's redistributor address--not the vCPU ID--as the target_addr
parameter. This is evident from how its_encode_target() encodes the
target_addr parameter as:
its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16)
This shows that we right-shift the input target_addr parameter by 16
bits before encoding it. This makes sense when the parameter refers to
redistributor addresses (e.g., 0x20000, 0x30000) but not vCPU IDs
(e.g., 0x2, 0x3).
The current impact of passing vCPU IDs to its_send_mapc_cmd() is that
all vCPU IDs become 0x0 after the bit shift. Thus, when
vgic_its_cmd_handle_mapc() receives the ITS command in vgic-its.c, it
always interprets the collection's target_vcpu as 0. All interrupts
sent to collections will be processed by vCPU 0, which defeats the
purpose of this multi-vCPU test.
Fix by left-shifting the vCPU parameter received by its_send_mapc_cmd
16 bits before passing it into its_encode_target for encoding.
Signed-off-by: Maximilian Dittgen <mdittgen(a)amazon.com>
---
To validate the patch, I added the following debug code at the top of vgic_its_cmd_handle_mapc:
u64 raw_cmd2 = le64_to_cpu(its_cmd[2]);
u32 target_addr = its_cmd_get_target_addr(its_cmd);
kvm_info("MAPC: coll_id=%d, raw_cmd[2]=0x%llx, parsed_target=%u\n",
coll_id, raw_cmd2, target_addr);
vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
kvm_info("MAPC: coll_id=%d, vcpu_id=%d\n", coll_id, vcpu ? vcpu->vcpu_id : -1);
I then ran `./vgic_lpi_stress -v 3` to trigger the stress selftest with 3 vCPUs.
Before the patch, the debug logs read:
kvm [20832]: MAPC: coll_id=0, raw_cmd[2]=0x8000000000000000, parsed_target=0
kvm [20832]: MAPC: coll_id=0, vcpu_id=0
kvm [20832]: MAPC: coll_id=1, raw_cmd[2]=0x8000000000000001, parsed_target=0
kvm [20832]: MAPC: coll_id=1, vcpu_id=0
kvm [20832]: MAPC: coll_id=2, raw_cmd[2]=0x8000000000000002, parsed_target=0
kvm [20832]: MAPC: coll_id=2, vcpu_id=0
Note the last bit of the cmd string reflects the collection ID, but the rest of the cmd string reads 0. The handler parses out vCPU 0 for all 3 mapc calls.
After the patch, the debug logs read:
kvm [20019]: MAPC: coll_id=0, raw_cmd[2]=0x8000000000000000, parsed_target=0
kvm [20019]: MAPC: coll_id=0, vcpu_id=0
kvm [20019]: MAPC: coll_id=1, raw_cmd[2]=0x8000000000010001, parsed_target=1
kvm [20019]: MAPC: coll_id=1, vcpu_id=1
kvm [20019]: MAPC: coll_id=2, raw_cmd[2]=0x8000000000020002, parsed_target=2
kvm [20019]: MAPC: coll_id=2, vcpu_id=2
Note that the target vcpu and target collection are both visible in the cmd string. The handler parses out the correct vCPU for all 3 mapc calls.
---
tools/testing/selftests/kvm/lib/arm64/gic_v3_its.c | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/kvm/lib/arm64/gic_v3_its.c b/tools/testing/selftests/kvm/lib/arm64/gic_v3_its.c
index 09f270545646..23c46ad17221 100644
--- a/tools/testing/selftests/kvm/lib/arm64/gic_v3_its.c
+++ b/tools/testing/selftests/kvm/lib/arm64/gic_v3_its.c
@@ -15,6 +15,8 @@
#include "gic_v3.h"
#include "processor.h"
+#define GITS_COLLECTION_TARGET_SHIFT 16
+
static u64 its_read_u64(unsigned long offset)
{
return readq_relaxed(GITS_BASE_GVA + offset);
@@ -217,7 +219,7 @@ void its_send_mapc_cmd(void *cmdq_base, u32 vcpu_id, u32 collection_id, bool val
its_encode_cmd(&cmd, GITS_CMD_MAPC);
its_encode_collection(&cmd, collection_id);
- its_encode_target(&cmd, vcpu_id);
+ its_encode_target(&cmd, vcpu_id << GITS_COLLECTION_TARGET_SHIFT);
its_encode_valid(&cmd, valid);
its_send_cmd(cmdq_base, &cmd);
--
2.50.1 (Apple Git-155)
Amazon Web Services Development Center Germany GmbH
Tamara-Danz-Str. 13
10243 Berlin
Geschaeftsfuehrung: Christian Schlaeger
Eingetragen am Amtsgericht Charlottenburg unter HRB 257764 B
Sitz: Berlin
Ust-ID: DE 365 538 597
Hello,
This patch series addresses an issue in the memory failure handling path
where MF_DELAYED is incorrectly treated as an error. This issue was
revealed because guest_memfd’s .error_remove_folio() callback returns
MF_DELAYED.
Currently, when the .error_remove_folio() callback for guest_memfd returns
MF_DELAYED, there are a few issues.
1. truncate_error_folio() maps this to MF_FAILED. This causes
memory_failure() to return -EBUSY, which unconditionally triggers a
SIGBUS. The process’ configured memory corruption kill policy is ignored
- even if PR_MCE_KILL_LATE is set, the process will still get a SIGBUS
on deferred memory failures.
2. “Failed to punch page” is printed, even though MF_DELAYED indicates that
it was intentionally not punched.
The first patch corrects this by updating truncate_error_folio() to
propagate MF_DELAYED to its caller. This allows memory_failure() to return
0, indicating success, and lets the delayed handling proceed as designed.
This patch also updates me_pagecache_clean() to account for the folio's
refcount, which remains elevated during delayed handling, aligning its
logic with me_swapcache_dirty().
The subsequent two patches add KVM selftests to validate the fix and the
expected behavior of guest_memfd memory failure:
The first test patch verifies that memory_failure() now returns 0 in the
delayed case and confirms that SIGBUS signaling logic remains correct for
other scenarios (e.g., madvise injection or PR_MCE_KILL_EARLY).
The second test patch confirms that after a memory failure, the poisoned
page is correctly unmapped from the KVM guest's stage 2 page tables and
that a subsequent access by the guest correctly notifies the userspace VMM
with EHWPOISON.
This patch series is built upon kvm/next. In addition, to align with the
change of INIT_SHARED and to use the macro wrapper in guest_memfd
selftests, we put these patches behind Sean’s patches [1].
For ease of testing, this series is also available, stitched together, at
https://github.com/googleprodkernel/linux-cc/tree/memory-failure-mf-delayed…
[1]: https://lore.kernel.org/all/20251003232606.4070510-1-seanjc@google.com/T/
Thank you,
Lisa Wang (3):
mm: memory_failure: Fix MF_DELAYED handling on truncation during
failure
KVM: selftests: Add memory failure tests in guest_memfd_test
KVM: selftests: Test guest_memfd behavior with respect to stage 2 page
tables
mm/memory-failure.c | 24 +-
.../testing/selftests/kvm/guest_memfd_test.c | 233 ++++++++++++++++++
2 files changed, 248 insertions(+), 9 deletions(-)
--
2.51.0.788.g6d19910ace-goog
This series primarily adds support for DECLARE_PCI_FIXUP_*() in modules.
There are a few drivers that already use this, and so they are
presumably broken when built as modules.
While at it, I wrote some unit tests that emulate a fake PCI device, and
let the PCI framework match/not-match its vendor/device IDs. This test
can be built into the kernel or built as a module.
I also include some infrastructure changes (patch 3 and 4), so that
ARCH=um (the default for kunit.py), ARCH=arm, and ARCH=arm64 will run
these tests by default. These patches have different maintainers and are
independent, so they can probably be picked up separately. I included
them because otherwise the tests in patch 2 aren't so easy to run.
Brian Norris (4):
PCI: Support FIXUP quirks in modules
PCI: Add KUnit tests for FIXUP quirks
um: Select PCI_DOMAINS_GENERIC
kunit: qemu_configs: Add PCI to arm, arm64
arch/um/Kconfig | 1 +
drivers/pci/Kconfig | 11 ++
drivers/pci/Makefile | 1 +
drivers/pci/fixup-test.c | 197 ++++++++++++++++++++++
drivers/pci/quirks.c | 62 +++++++
include/linux/module.h | 18 ++
kernel/module/main.c | 26 +++
tools/testing/kunit/qemu_configs/arm.py | 1 +
tools/testing/kunit/qemu_configs/arm64.py | 1 +
9 files changed, 318 insertions(+)
create mode 100644 drivers/pci/fixup-test.c
--
2.51.0.384.g4c02a37b29-goog
Hi all,
This series addresses an off-by-one bug in the VMA count limit check
and introduces several improvements for clarity, test coverage, and
observability around the VMA limit mechanism.
The VMA count limit, controlled by sysctl_max_map_count, is a critical
safeguard that prevents a single process from consuming excessive kernel
memory by creating too many memory mappings. However, the checks in
do_mmap() and do_brk_flags() used a strict inequality, allowing a
process to exceed this limit by one VMA.
This series begins by fixing this long-standing bug. The subsequent
patches build on this by improving the surrounding code. A comprehensive
selftest is added to validate VMA operations near the limit, preventing
future regressions. The open-coded limit checks are replaced with a
centralized helper, vma_count_remaining(), to improve readability.
For better code clarity, mm_struct->map_count is renamed to the more
apt vma_count.
Finally, a trace event is added to provide observability for processes
that fail allocations due to VMA exhaustion, which is valuable for
debugging and profiling on production systems.
The major changes in this version are:
1. Rebased on mm-new to resolve prior conflicts.
2. The patches to harden and add assertions for the VMA count
have been dropped. David pointed out that these could be
racy if sysctl_max_map_count is changed from userspace at
just the wrong time.
3. The selftest has been completely rewritten per Lorenzo's
feedback to make use of the kselftest harness and vm_util.h
helpers.
4. The trace event has also been updated to contain more useful
information and has been given a more fitting name, per
feedback from Steve and Lorenzo.
Tested on x86_64 and arm64:
1. Build test:
allyesconfig for rename
2. Selftests:
cd tools/testing/selftests/mm && \
make && \
./run_vmtests.sh -t max_vma_count
3. vma tests:
cd tools/testing/vma && \
make && \
./vma
Link to v2:
https://lore.kernel.org/r/20250915163838.631445-1-kaleshsingh@google.com/
Thanks to everyone for their comments and feedback on the previous
versions.
--Kalesh
Kalesh Singh (5):
mm: fix off-by-one error in VMA count limit checks
mm/selftests: add max_vma_count tests
mm: introduce vma_count_remaining()
mm: rename mm_struct::map_count to vma_count
mm/tracing: introduce trace_mm_insufficient_vma_slots event
MAINTAINERS | 2 +
fs/binfmt_elf.c | 2 +-
fs/coredump.c | 2 +-
include/linux/mm.h | 2 -
include/linux/mm_types.h | 2 +-
include/trace/events/vma.h | 32 +
kernel/fork.c | 2 +-
mm/debug.c | 2 +-
mm/internal.h | 3 +
mm/mmap.c | 31 +-
mm/mremap.c | 13 +-
mm/nommu.c | 8 +-
mm/util.c | 1 -
mm/vma.c | 39 +-
mm/vma_internal.h | 2 +
tools/testing/selftests/mm/.gitignore | 1 +
tools/testing/selftests/mm/Makefile | 1 +
.../selftests/mm/max_vma_count_tests.c | 672 ++++++++++++++++++
tools/testing/selftests/mm/run_vmtests.sh | 5 +
tools/testing/vma/vma.c | 32 +-
tools/testing/vma/vma_internal.h | 16 +-
21 files changed, 818 insertions(+), 52 deletions(-)
create mode 100644 include/trace/events/vma.h
create mode 100644 tools/testing/selftests/mm/max_vma_count_tests.c
base-commit: 4c4142c93fc19cd75a024e5c81b0532578a9e187
--
2.51.0.760.g7b8bcc2412-goog