After gcc commit 3c57e692357c79ee7623dfc1586652aee2aefb8f Author: Patrick Palka ppalka@redhat.com
libstdc++: Add floating-point std::to_chars implementation
the following hot functions grew in size by more than 10% (but their benchmarks grew in size by less than 1%): - 447.dealII:libstdc++.so.6.0.29 grew in size by 12% from 1245370 to 1391240 bytes
Below reproducer instructions can be used to re-build both "first_bad" and "last_good" cross-toolchains used in this bisection. Naturally, the scripts will fail when triggerring benchmarking jobs if you don't have access to Linaro TCWG CI.
For your convenience, we have uploaded tarballs with pre-processed source and assembly files at: - First_bad save-temps: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... - Last_good save-temps: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... - Baseline save-temps: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-...
Configuration: - Benchmark: SPEC CPU2006 - Toolchain: Clang + Glibc + LLVM Linker - Version: all components were built from their latest release branch - Target: arm-linux-gnueabihf - Compiler flags: -Os -mthumb - Hardware: APM Mustang 8x X-Gene1
This benchmarking CI is work-in-progress, and we welcome feedback and suggestions at linaro-toolchain@lists.linaro.org . In our improvement plans is to add support for SPEC CPU2017 benchmarks and provide "perf report/annotate" data behind these reports.
THIS IS THE END OF INTERESTING STUFF. BELOW ARE LINKS TO BUILDS, REPRODUCTION INSTRUCTIONS, AND THE RAW COMMIT.
This commit has regressed these CI configurations: - tcwg_bmk_llvm_apm/llvm-release-arm-spec2k6-Os
First_bad build: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... Last_good build: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... Baseline build: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... Even more details: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-...
Reproduce builds: <cut> mkdir investigate-gcc-3c57e692357c79ee7623dfc1586652aee2aefb8f cd investigate-gcc-3c57e692357c79ee7623dfc1586652aee2aefb8f
# Fetch scripts git clone https://git.linaro.org/toolchain/jenkins-scripts
# Fetch manifests and test.sh script mkdir -p artifacts/manifests curl -o artifacts/manifests/build-baseline.sh https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... --fail curl -o artifacts/manifests/build-parameters.sh https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... --fail curl -o artifacts/test.sh https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... --fail chmod +x artifacts/test.sh
# Reproduce the baseline build (build all pre-requisites) ./jenkins-scripts/tcwg_bmk-build.sh @@ artifacts/manifests/build-baseline.sh
# Save baseline build state (which is then restored in artifacts/test.sh) mkdir -p ./bisect rsync -a --del --delete-excluded --exclude /bisect/ --exclude /artifacts/ --exclude /gcc/ ./ ./bisect/baseline/
cd gcc
# Reproduce first_bad build git checkout --detach 3c57e692357c79ee7623dfc1586652aee2aefb8f ../artifacts/test.sh
# Reproduce last_good build git checkout --detach 5033506993ef92589373270a8e8dbbf50e3ebef1 ../artifacts/test.sh
cd .. </cut>
Full commit (up to 1000 lines): <cut> commit 3c57e692357c79ee7623dfc1586652aee2aefb8f Author: Patrick Palka ppalka@redhat.com Date: Thu Dec 17 23:11:34 2020 -0500
libstdc++: Add floating-point std::to_chars implementation
This implements the floating-point std::to_chars overloads for float, double and long double. We use the Ryu library to compute the shortest round-trippable fixed and scientific forms for float, double and long double. We also use Ryu for performing explicit-precision fixed and scientific formatting for float and double. For explicit-precision formatting for long double we fall back to using printf. Hexadecimal formatting for float, double and long double is implemented from scratch.
The supported long double binary formats are binary64, binary80 (x86 80-bit extended precision), binary128 and ibm128.
Much of the complexity of the implementation is in computing the exact output length before handing it off to Ryu (which doesn't do bounds checking). In some cases it's hard to compute the output length beforehand, so in these cases we instead compute an upper bound on the output length and use a sufficiently-sized intermediate buffer only if necessary.
Another source of complexity is in the general-with-precision formatting mode, where we need to do zero-trimming of the string returned by Ryu, and where we also take care to avoid having to format the number through Ryu a second time when the general formatting mode resolves to fixed (which we determine by doing a scientific formatting first and inspecting the scientific exponent). We avoid going through Ryu twice by instead transforming the scientific form to the corresponding fixed form via in-place string manipulation.
This implementation is non-conforming in a couple of ways:
1. For the shortest hexadecimal formatting, we currently follow the Microsoft implementation's decision to be consistent with the output of printf's '%a' specifier at the expense of sometimes not printing the shortest representation. For example, the shortest hex form for the number 1.08p+0 is 2.1p-1, but we output the former instead of the latter, as does printf.
2. The Ryu routine generic_binary_to_decimal that we use for performing shortest formatting for large floating point types is implemented using the __int128 type, but some targets with a large long double type lack __int128 (e.g. i686), so we can't perform shortest formatting of long double on such targets through Ryu. As a temporary stopgap this patch makes the long double to_chars overloads just dispatch to the double overloads on these targets, which means we lose precision in the output. (We could potentially fix this by writing a specialized version of Ryu's generic_binary_to_decimal routine that uses uint64_t instead of __int128.) [Though I wonder if there's a better way to work around the lack of __int128 on i686 specifically?]
3. Our shortest formatting for __ibm128 doesn't guarantee the round-trip property if the difference between the high- and low-order exponent is large. This is because we treat __ibm128 as if it has a contiguous 105-bit mantissa by merging the mantissas of the high- and low-order parts (using code extracted from glibc), so we potentially lose precision from the low-order part. This seems to be consistent with how glibc printf formats __ibm128.
libstdc++-v3/ChangeLog:
* config/abi/pre/gnu.ver: Add new exports. * include/std/charconv (to_chars): Declare the floating-point overloads for float, double and long double. * src/c++17/Makefile.am (sources): Add floating_to_chars.cc. * src/c++17/Makefile.in: Regenerate. * src/c++17/floating_to_chars.cc: New file. (to_chars): Define for float, double and long double. * testsuite/20_util/to_chars/long_double.cc: New test. --- libstdc++-v3/config/abi/pre/gnu.ver | 7 + libstdc++-v3/include/std/charconv | 24 + libstdc++-v3/src/c++17/Makefile.am | 1 + libstdc++-v3/src/c++17/Makefile.in | 3 +- libstdc++-v3/src/c++17/floating_to_chars.cc | 1563 ++++++++++++++++++++ .../testsuite/20_util/to_chars/long_double.cc | 199 +++ 6 files changed, 1796 insertions(+), 1 deletion(-)
diff --git a/libstdc++-v3/config/abi/pre/gnu.ver b/libstdc++-v3/config/abi/pre/gnu.ver index 4b4bd8ab6da..05e0a512247 100644 --- a/libstdc++-v3/config/abi/pre/gnu.ver +++ b/libstdc++-v3/config/abi/pre/gnu.ver @@ -2393,6 +2393,13 @@ GLIBCXX_3.4.29 { # std::once_flag::_M_finish(bool) _ZNSt9once_flag9_M_finishEb;
+ # std::to_chars(char*, char*, [float|double|long double]) + _ZSt8to_charsPcS_[defg]; + # std::to_chars(char*, char*, [float|double|long double], chars_format) + _ZSt8to_charsPcS_[defg]St12chars_format; + # std::to_chars(char*, char*, [float|double|long double], chars_format, int) + _ZSt8to_charsPcS_[defg]St12chars_formati; + } GLIBCXX_3.4.28;
# Symbols in the support library (libsupc++) have their own tag. diff --git a/libstdc++-v3/include/std/charconv b/libstdc++-v3/include/std/charconv index dd1ebdf8322..b57b0a16db2 100644 --- a/libstdc++-v3/include/std/charconv +++ b/libstdc++-v3/include/std/charconv @@ -702,6 +702,30 @@ namespace __detail chars_format __fmt = chars_format::general) noexcept; #endif
+ // Floating-point std::to_chars + + // Overloads for float. + to_chars_result to_chars(char* __first, char* __last, float __value) noexcept; + to_chars_result to_chars(char* __first, char* __last, float __value, + chars_format __fmt) noexcept; + to_chars_result to_chars(char* __first, char* __last, float __value, + chars_format __fmt, int __precision) noexcept; + + // Overloads for double. + to_chars_result to_chars(char* __first, char* __last, double __value) noexcept; + to_chars_result to_chars(char* __first, char* __last, double __value, + chars_format __fmt) noexcept; + to_chars_result to_chars(char* __first, char* __last, double __value, + chars_format __fmt, int __precision) noexcept; + + // Overloads for long double. + to_chars_result to_chars(char* __first, char* __last, long double __value) + noexcept; + to_chars_result to_chars(char* __first, char* __last, long double __value, + chars_format __fmt) noexcept; + to_chars_result to_chars(char* __first, char* __last, long double __value, + chars_format __fmt, int __precision) noexcept; + _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // C++14 diff --git a/libstdc++-v3/src/c++17/Makefile.am b/libstdc++-v3/src/c++17/Makefile.am index 37cdb53c076..2ec5ed621ca 100644 --- a/libstdc++-v3/src/c++17/Makefile.am +++ b/libstdc++-v3/src/c++17/Makefile.am @@ -51,6 +51,7 @@ endif
sources = \ floating_from_chars.cc \ + floating_to_chars.cc \ fs_dir.cc \ fs_ops.cc \ fs_path.cc \ diff --git a/libstdc++-v3/src/c++17/Makefile.in b/libstdc++-v3/src/c++17/Makefile.in index ccae721ab3f..9b36b7a916c 100644 --- a/libstdc++-v3/src/c++17/Makefile.in +++ b/libstdc++-v3/src/c++17/Makefile.in @@ -124,7 +124,7 @@ LTLIBRARIES = $(noinst_LTLIBRARIES) libc__17convenience_la_LIBADD = @ENABLE_DUAL_ABI_TRUE@am__objects_1 = cow-fs_dir.lo cow-fs_ops.lo \ @ENABLE_DUAL_ABI_TRUE@ cow-fs_path.lo -am__objects_2 = floating_from_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ +am__objects_2 = floating_from_chars.lo floating_to_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ memory_resource.lo $(am__objects_1) @ENABLE_DUAL_ABI_TRUE@am__objects_3 = cow-string-inst.lo @ENABLE_EXTERN_TEMPLATE_TRUE@am__objects_4 = ostream-inst.lo \ @@ -440,6 +440,7 @@ headers =
sources = \ floating_from_chars.cc \ + floating_to_chars.cc \ fs_dir.cc \ fs_ops.cc \ fs_path.cc \ diff --git a/libstdc++-v3/src/c++17/floating_to_chars.cc b/libstdc++-v3/src/c++17/floating_to_chars.cc new file mode 100644 index 00000000000..dd83f5eea93 --- /dev/null +++ b/libstdc++-v3/src/c++17/floating_to_chars.cc @@ -0,0 +1,1563 @@ +// std::to_chars implementation for floating-point types -*- C++ -*- + +// Copyright (C) 2020 Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version. + +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. + +// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation. + +// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// http://www.gnu.org/licenses/. + +// Activate __glibcxx_assert within this file to shake out any bugs. +#define _GLIBCXX_ASSERTIONS 1 + +#include <charconv> + +#include <bit> +#include <cfenv> +#include <cassert> +#include <cmath> +#include <cstdio> +#include <cstring> +#include <langinfo.h> +#include <optional> +#include <string_view> +#include <type_traits> + +// Determine the binary format of 'long double'. + +// We support the binary64, float80 (i.e. x86 80-bit extended precision), +// binary128, and ibm128 formats. +#define LDK_UNSUPPORTED 0 +#define LDK_BINARY64 1 +#define LDK_FLOAT80 2 +#define LDK_BINARY128 3 +#define LDK_IBM128 4 + +#if __LDBL_MANT_DIG__ == __DBL_MANT_DIG__ +# define LONG_DOUBLE_KIND LDK_BINARY64 +#elif defined(__SIZEOF_INT128__) +// The Ryu routines need a 128-bit integer type in order to do shortest +// formatting of types larger than 64-bit double, so without __int128 we can't +// support any large long double format. This is the case for e.g. i386. +# if __LDBL_MANT_DIG__ == 64 +# define LONG_DOUBLE_KIND LDK_FLOAT80 +# elif __LDBL_MANT_DIG__ == 113 +# define LONG_DOUBLE_KIND LDK_BINARY128 +# elif __LDBL_MANT_DIG__ == 106 +# define LONG_DOUBLE_KIND LDK_IBM128 +# endif +#endif +#if !defined(LONG_DOUBLE_KIND) +# define LONG_DOUBLE_KIND LDK_UNSUPPORTED +#endif + +namespace +{ + namespace ryu + { +#include "ryu/common.h" +#include "ryu/digit_table.h" +#include "ryu/d2s_intrinsics.h" +#include "ryu/d2s_full_table.h" +#include "ryu/d2fixed_full_table.h" +#include "ryu/f2s_intrinsics.h" +#include "ryu/d2s.c" +#include "ryu/d2fixed.c" +#include "ryu/f2s.c" + +#ifdef __SIZEOF_INT128__ + namespace generic128 + { + // Put the generic Ryu bits in their own namespace to avoid name conflicts. +# include "ryu/generic_128.h" +# include "ryu/ryu_generic_128.h" +# include "ryu/generic_128.c" + } // namespace generic128 + + using generic128::floating_decimal_128; + using generic128::generic_binary_to_decimal; + + int + to_chars(const floating_decimal_128 v, char* const result) + { return generic128::generic_to_chars(v, result); } +#endif + } // namespace ryu + + // A traits class that contains pertinent information about the binary + // format of each of the floating-point types we support. + template<typename T> + struct floating_type_traits + { }; + + template<> + struct floating_type_traits<float> + { + // We (and Ryu) assume float has the IEEE binary32 format. + static_assert(__FLT_MANT_DIG__ == 24); + static constexpr int mantissa_bits = 23; + static constexpr int exponent_bits = 8; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = uint32_t; + using shortest_scientific_t = ryu::floating_decimal_32; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000011101011100110101100101101110000000000000000000000000 }; + }; + + template<> + struct floating_type_traits<double> + { + // We (and Ryu) assume double has the IEEE binary64 format. + static_assert(__DBL_MANT_DIG__ == 53); + static constexpr int mantissa_bits = 52; + static constexpr int exponent_bits = 11; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = uint64_t; + using shortest_scientific_t = ryu::floating_decimal_64; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000011000110101110111000001100101110000111100, + 0b0111100011110101011000011110000000110110010101011000001110011111, + 0b0101101100000000011100100100111100110110110100010001010101110000, + 0b0011110010111000101111110101100011101100010001010000000101100111, + 0b0001010000011001011100100001010000010101101000001101000000000000 }; + }; + +#if LONG_DOUBLE_KIND == LDK_BINARY64 + // When long double is equivalent to double, we just forward the long double + // overloads to the double overloads, so we don't need to define a a + // floating_type_traits<long double> specialization in this case. +#elif LONG_DOUBLE_KIND == LDK_FLOAT80 + template<> + struct floating_type_traits<long double> + { + static constexpr int mantissa_bits = 64; + static constexpr int exponent_bits = 15; + static constexpr bool has_implicit_leading_bit = false; + using mantissa_t = uint64_t; + using shortest_scientific_t = ryu::floating_decimal_128; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000000000110101011111110100010100110000011101, + 0b1001100101001111010011011111101000101111110001011001011101110000, + 0b0000101111111011110010001000001010111101011110111111010100011001, + 0b0011100000011111001101101011111001111100100010000101001111101001, + 0b0100100100000000100111010010101110011000110001101101110011001010, + 0b0111100111100010100000010011000010010110101111110101000011110100, + 0b1010100111100010011110000011011101101100010110000110101010101010, + 0b0000001111001111000000101100111011011000101000110011101100110010, + 0b0111000011100100101101010100001101111110101111001000010011111111, + 0b0010111000100110100100100010101100111010110001101010010111001000, + 0b0000100000010110000011001001000111000001111010100101101000001111, + 0b0010101011101000111100001011000010011101000101010010010000101111, + 0b1011111011101101110010101011010001111000101000101101011001100011, + 0b1010111011011011110111110011001010000010011001110100101101000101, + 0b0011000001110110011010010000011100100011001011001100001101010110, + 0b0100011111011000111111101000011110000010111110101001000000001001, + 0b1110000001110001001101101110011000100000001010000111100010111010, + 0b1110001001010011101000111000001000010100110000010110100011110000, + 0b0000011010110000110001111000011111000011001101001101001001000110, + 0b1010010111001000101001100101010110100100100010010010000101000010, + 0b1011001110000111100010100110000011100011111001110111001100000101, + 0b0110101001001000010110001000010001010101110101100001111100011001, + 0b1111100011110101011110011010101001010010100011000010110001101001, + 0b0100000100001000111101011100010011011111011001000000001100011000, + 0b1110111111000111100101110111110000000011001110011100011011011001, + 0b1100001100100000010001100011011000111011110000110011010101000011, + 0b1111111011100111011101001111111000010000001111010111110010000100, + 0b1110111001111110101111000101000000001010001110011010001000111010, + 0b1000010001011000101111111010110011111101110101101001111000111010, + 0b0100000111101001000111011001101000001010111011101001101111000100, + 0b0000011100110001000111011100111100110001101111111010110111100000, + 0b0000011101011100100110010011110101010100010011110010010111010000, + 0b0011011001100111110101111100001001101110101101001110110011110110, + 0b1011000101000001110100111001100100111100110011110000000001101000, + 0b1011100011110100001001110101010110111001000000001011101001011110, + 0b1111001010010010100000010110101010101011101000101000000000001100, + 0b1000001111100100111001110101100001010011111111000001000011110000, + 0b0001011101001000010000101101111000001110101100110011001100110111, + 0b1110011100000010101011011111001010111101111110100000011100000011, + 0b1001110110011100101010011110100010110001001110110000101011100110, + 0b1001101000100011100111010000011011100001000000110101100100001001, + 0b1010111000101000101101010111000010001100001010100011111100000100, + 0b0111101000100011000101101011111011100010001101110111001111001011, + 0b1110100111010110001110110110000000010110100011110000010001111100, + 0b1100010100011010001011001000111001010101011110100101011001000000, + 0b0000110001111001100110010110111010101101001101000000000010010101, + 0b0001110111101000001111101010110010010000111110111100000111110100, + 0b0111110111001001111000110001101101001010101110110101111110000100, + 0b0000111110111010101111100010111010011100010110011011011001000001, + 0b1010010100100100101110111111111000101100000010111111101101000110, + 0b1000100111111101100011001101000110001000000100010101010100001101, + 0b1100101010101000111100101100001000110001110010100000000010110101, + 0b1010000100111101100100101010010110100010000000110101101110000100, + 0b1011111011110001110000100100000000001010111010001101100000100100, + 0b0111101101100011001110011100000001000101101101111000100111011111, + 0b0100111010010011011001010011110100001100111010010101111111100011, + 0b0010001001011000111000001100110111110111110010100011000110110110, + 0b0101010110000000010000100000110100111011111101000100000111010010, + 0b0110000011011101000001010100110101101110011100110101000000001001, + 0b1101100110100000011000001111000100100100110001100110101010101100, + 0b0010100101010110010010001010101000011111111111001011001010001111, + 0b0111001010001111001100111001010101001000110101000011110000001000, + 0b0110010011001001001111110001010010001011010010001101110110110011, + 0b0110010100111011000100111000001001101011111001110010111110111111, + 0b0101110111001001101100110100101001110010101110011001101110001000, + 0b0100110101010111011010001100010111100011010011111001010100111000, + 0b0111000110110111011110100100010111000110000110110110110001111110, + 0b1000101101010100100100111110100011110110110010011001110011110101, + 0b1001101110101001010100111101101011000101000010110101101111110000, + 0b0100100101001011011001001011000010001101001010010001010110101000, + 0b0010100001001011100110101000010110000111000111000011100101011011, + 0b0110111000011001111101101011111010001000000010101000101010011110, + 0b1000110110100001111011000001111100001001000000010110010100100100, + 0b1001110100011111100111101011010000010101011100101000010010100110, + 0b0001010110101110100010101010001110110110100011101010001001111100, + 0b1010100101101100000010110011100110100010010000100100001110000100, + 0b0001000000010000001010000010100110000001110100111001110111101101, + 0b1100000000000000000000000000000000000000000000000000000000000000 }; + }; +#elif LONG_DOUBLE_KIND == LDK_BINARY128 + template<> + struct floating_type_traits<long double> + { + static constexpr int mantissa_bits = 112; + static constexpr int exponent_bits = 15; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = unsigned __int128; + using shortest_scientific_t = ryu::floating_decimal_128; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000000000000000000000000000000100000010000000, + 0b1011001111110100000100010101101110011100100110000110010110011000, + 0b1010100010001101111111000000001101010010100010010000111011110111, + 0b1011111001110001111000011111000010110111000111110100101010100101, + 0b0110100110011110011011000011000010011001110001001001010011100011, + 0b0000011111110010101111101011101010000110011111100111001110100111, + 0b0100010101010110000010111011110100000010011001001010001110111101, + 0b1101110111000010001101100000110100000111001001101011000101011011, + 0b0100111011101101010000001101011000101100101110010010110000101011, + 0b0100000110111000000110101000010011101000110100010110000011101101, + 0b1011001101001000100001010001100100001111011101010101110001010110, + 0b1000000001000000101001110010110010001111101101010101001100000110, + 0b0101110110100110000110000001001010111110001110010000111111010011, + 0b1010001111100111000100011100100100111100100101000001011001000111, + 0b1010011000011100110101100111001011100101111111100001110100000100, + 0b1100011100100010100000110001001010000000100000001001010111011101, + 0b0101110000100011001111101101000000100110000010010111010001111010, + 0b0100111100011010110111101000100110000111001001101100000001111100, + 0b1100100100111110101011000100000101011010110111000111110100110101, + 0b0110010000010111010100110011000000111010000010111011010110000100, + 0b0101001001010010110111010111000101011100000111100111000001110010, + 0b1101111111001011101010110001000111011010111101001011010110100100, + 0b0001000100110000011111101011001101110010110110010000000011100100, + 0b0001000000000101001001001000000000011000100011001110101001001110, + 0b0010010010001000111010011011100001000110011011011110110100111000, + 0b0000100110101100000111100010100100011100110111011100001111001100, + 0b1011111010001110001100000011110111111111100000001011111111101100, + 0b0000011100001111010101110000100110111100101101110111101001000001, + 0b1100010001110110111100001001001101101000011100000010110101001011, + 0b0100101001101011111001011110101101100011011111011100101010101111, + 0b0001101001111001110000101101101100001011010001011110011101000010, + 0b1111000000101001101111011010110011101110100001011011001011100010, + 0b0101001010111101101100001111100010010110001101001000001101100100, + 0b0101100101011110001100101011111000111001111001001001101101100001, + 0b1111001101010010100100011011000110110010001111000111010001001101, + 0b0001110010011000000001000110110111011000011100001000011001110111, + 0b0100001011011011011011110011101100100101111111101100101000001110, + 0b0101011110111101010111100111101111000101111111111110100011011010, + 0b1110101010001001110100000010110111010111111010111110100110010110, + 0b1010001111100001001100101000110100001100011100110010000011010111, + 0b1111111101101111000100111100000101011000001110011011101010111001, + 0b1111101100001110100101111101011001000100000101110000110010100011, + 0b1001010110110101101101000101010001010000101011011111010011010000, + 0b0111001110110011101001100111000001000100001010110000010000001101, + 0b0101111100111110100111011001111001111011011110010111010011101010, + 0b1110111000000001100100111001100100110001011011001110101111110111, + 0b0001010001001101010111101010011111000011110001101101011001111111, + 0b0101000011100011010010001101100001011101011010100110101100100010, + 0b0001000101011000100101111100110110000101101101111000110001001011, + 0b0101100101001011011000010101000000010100011100101101000010011111, + 0b1000010010001011101001011010100010111011110100110011011000100111, + 0b1000011011100001010111010111010011101100100010010010100100101001, + 0b1001001001010111110101000010111010000000101111010100001010010010, + 0b0011011110110010010101111011000001000000000011011111000011111011, + 0b1011000110100011001110000001000100000001011100010111010010011110, + 0b0111101110110101110111110000011000000100011100011000101101101110, + 0b1001100101111011011100011110101011001111100111101010101010110111, + 0b1100110010010001100011001111010000000100011101001111011101001111, + 0b1000111001111010100101000010000100000001001100101010001011001101, + 0b0011101011110000110010100101010100110010100001000010101011111101, + 0b1100000000000110000010101011000000011101000110011111100010111111, + 0b0010100110000011011100010110111100010110101100110011101110001101, + 0b0010111101010011111000111001111100110111111100100011110001101110, + 0b1001110111001001101001001001011000010100110001000000100011010110, + 0b0011110101100111011011111100001000011001010100111100100101111010, + 0b0010001101000011000010100101110000010101101000100110000100001010, + 0b0010000010100110010101100101110011101111000111111111001001100001, + 0b0100111111011011011011100111111011000010011101101111011111110110, + 0b1111111111010110101011101000100101110100001110001001101011100111, + 0b1011111101000101110000111100100010111010100001010000010010110010, + 0b1111010101001011101011101010000100110110001110111100100110111111, + 0b1011001101000001001101000010101010010110010001100001011100011010, + 0b0101001011011101010001110100010000010001111100100100100001001101, + 0b0010100000111001100011000101100101000001111100111001101000000010, + 0b1011001111010101011001000100100110100100110111110100000110111000, + 0b0101011111010011100011010010111101110010100001111111100010001001, + 0b0010111011101100100000000000001111111010011101100111100001001101, + 0b1101000000000000000000000000000000000000000000000000000000000000 }; + }; +#elif LONG_DOUBLE_KIND == LDK_IBM128 + template<> + struct floating_type_traits<long double> + { + static constexpr int mantissa_bits = 105; + static constexpr int exponent_bits = 11; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = unsigned __int128; + using shortest_scientific_t = ryu::floating_decimal_128; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000000000000000000000000000001000000100000000, + 0b0000000000000000000100000000000000000000001000000000000000000010, + 0b0000100000000000000000001001000000000000000001100100000000000000, + 0b0011000000000000000000000000000001110000010000000000000000000000, + 0b0000100000000000001000000000000000000000000000100000000000000000 }; + }; +#endif + + // An IEEE-style decomposition of a floating-point value of type T. + template<typename T> + struct ieee_t + { + typename floating_type_traits<T>::mantissa_t mantissa; + uint32_t biased_exponent; + bool sign; + }; + + // Decompose the floating-point value into its IEEE components. + template<typename T> + ieee_t<T> + get_ieee_repr(const T value) + { + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; + constexpr int total_bits = mantissa_bits + exponent_bits + 1; + + constexpr auto get_uint_t = [] { + if constexpr (total_bits <= 32) + return uint32_t{}; + else if constexpr (total_bits <= 64) + return uint64_t{}; +#ifdef __SIZEOF_INT128__ + else if constexpr (total_bits <= 128) + return (unsigned __int128){}; +#endif + }; + using uint_t = decltype(get_uint_t()); + uint_t value_bits = 0; + memcpy(&value_bits, &value, sizeof(value)); + + ieee_t<T> ieee_repr; + ieee_repr.mantissa = value_bits & ((uint_t{1} << mantissa_bits) - 1u); + ieee_repr.biased_exponent + = (value_bits >> mantissa_bits) & ((uint_t{1} << exponent_bits) - 1u); + ieee_repr.sign = (value_bits >> (mantissa_bits + exponent_bits)) & 1; + return ieee_repr; + } + +#if LONG_DOUBLE_KIND == LDK_IBM128 + template<> + ieee_t<long double> + get_ieee_repr(const long double value) + { + // The layout of __ibm128 isn't compatible with the standard IEEE format. + // So we transform it into an IEEE-compatible format, suitable for + // consumption by the generic Ryu API, with an 11-bit exponent and 105-bit + // mantissa (plus an implicit leading bit). We use the exponent and sign + // of the high part, and we merge the mantissa of the high part with the + // mantissa (and the implicit leading bit) of the low part. + using uint_t = unsigned __int128; + uint_t value_bits = 0; + memcpy(&value_bits, &value, sizeof(value_bits)); + + const uint64_t value_hi = value_bits; + const uint64_t value_lo = value_bits >> 64; + + uint64_t mantissa_hi = value_hi & ((1ull << 52) - 1); + unsigned exponent_hi = (value_hi >> 52) & ((1ull << 11) - 1); + const int sign_hi = (value_hi >> 63) & 1; + + uint64_t mantissa_lo = value_lo & ((1ull << 52) - 1); + const unsigned exponent_lo = (value_lo >> 52) & ((1ull << 11) - 1); + const int sign_lo = (value_lo >> 63) & 1; + + { + // The following code for adjusting the low-part mantissa to combine + // it with the high-part mantissa is taken from the glibc source file + // sysdeps/ieee754/ldbl-128ibm/printf_fphex.c. + mantissa_lo <<= 7; + if (exponent_lo != 0) + mantissa_lo |= (1ull << (52 + 7)); + else + mantissa_lo <<= 1; + + const int ediff = exponent_hi - exponent_lo - 53; + if (ediff > 63) + mantissa_lo = 0; + else if (ediff > 0) + mantissa_lo >>= ediff; + else if (ediff < 0) + mantissa_lo <<= -ediff; + + if (sign_lo != sign_hi && mantissa_lo != 0) + { + mantissa_lo = (1ull << 60) - mantissa_lo; + if (mantissa_hi == 0) + { + mantissa_hi = 0xffffffffffffeLL | (mantissa_lo >> 59); + mantissa_lo = 0xfffffffffffffffLL & (mantissa_lo << 1); + exponent_hi--; + } + else + mantissa_hi--; + } + } + + ieee_t<long double> ieee_repr; + ieee_repr.mantissa = ((uint_t{mantissa_hi} << 64) + | (uint_t{mantissa_lo} << 4)) >> 11; + ieee_repr.biased_exponent = exponent_hi; + ieee_repr.sign = sign_hi; + return ieee_repr; + } +#endif + + // Invoke Ryu to obtain the shortest scientific form for the given + // floating-point number. + template<typename T> + typename floating_type_traits<T>::shortest_scientific_t + floating_to_shortest_scientific(const T value) + { + if constexpr (std::is_same_v<T, float>) + return ryu::floating_to_fd32(value); + else if constexpr (std::is_same_v<T, double>) + return ryu::floating_to_fd64(value); +#ifdef __SIZEOF_INT128__ + else if constexpr (std::is_same_v<T, long double>) + { + constexpr int mantissa_bits + = floating_type_traits<T>::mantissa_bits; + constexpr int exponent_bits + = floating_type_traits<T>::exponent_bits; + constexpr bool has_implicit_leading_bit + = floating_type_traits<T>::has_implicit_leading_bit; + + const auto [mantissa, exponent, sign] = get_ieee_repr(value); + return ryu::generic_binary_to_decimal(mantissa, exponent, sign, + mantissa_bits, exponent_bits, + !has_implicit_leading_bit); + } +#endif + } + + // This subroutine returns true if the shortest scientific form fd is a + // positive power of 10, and the floating-point number that has this shortest + // scientific form is smaller than this power of 10. + // + // For instance, the exactly-representable 64-bit number + // 99999999999999991611392.0 has the shortest scientific form 1e23, so its + // exact value is smaller than its shortest scientific form. + // + // For these powers of 10 the length of the fixed form is one digit less + // than what the scientific exponent suggests. + // + // This subroutine inspects a lookup table to detect when fd is such a + // "rounded up" power of 10. + template<typename T> + bool + is_rounded_up_pow10_p(const typename + floating_type_traits<T>::shortest_scientific_t fd) + { + if (fd.exponent < 0 || fd.mantissa != 1) [[likely]] + return false; + + constexpr auto& pow10_adjustment_tab + = floating_type_traits<T>::pow10_adjustment_tab; + __glibcxx_assert(fd.exponent/64 < (int)std::size(pow10_adjustment_tab)); + return (pow10_adjustment_tab[fd.exponent/64] + & (1ull << (63 - fd.exponent%64))); + } + + int + get_mantissa_length(const ryu::floating_decimal_32 fd) + { return ryu::decimalLength9(fd.mantissa); } + + int + get_mantissa_length(const ryu::floating_decimal_64 fd) + { return ryu::decimalLength17(fd.mantissa); } + +#ifdef __SIZEOF_INT128__ + int + get_mantissa_length(const ryu::floating_decimal_128 fd) + { return ryu::generic128::decimalLength(fd.mantissa); } +#endif +} // anon namespace + +namespace std _GLIBCXX_VISIBILITY(default) +{ +_GLIBCXX_BEGIN_NAMESPACE_VERSION + +// This subroutine of __floating_to_chars_* handles writing nan, inf and 0 in +// all formatting modes. +template<typename T> + static optional<to_chars_result> + __handle_special_value(char* first, char* const last, const T value, + const chars_format fmt, const int precision) + { + __glibcxx_assert(precision >= 0); + + string_view str; + switch (__builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, + FP_ZERO, value)) + { + case FP_INFINITE: + str = "-inf"; + break; + + case FP_NAN: + str = "-nan"; + break; + + case FP_ZERO: + break; + + default: + case FP_SUBNORMAL: + case FP_NORMAL: [[likely]] + return nullopt; + } + + if (!str.empty()) + { + // We're formatting +-inf or +-nan. + if (!__builtin_signbit(value)) + str.remove_prefix(strlen("-")); + + if (last - first < (int)str.length()) + return {{last, errc::value_too_large}}; + + memcpy(first, &str[0], str.length()); + first += str.length(); + return {{first, errc{}}}; + } + + // We're formatting 0. + __glibcxx_assert(value == 0); + const auto orig_first = first; + const bool sign = __builtin_signbit(value); + int expected_output_length; + switch (fmt) + { + case chars_format::fixed: + case chars_format::scientific: + case chars_format::hex: + expected_output_length = sign + 1; + if (precision) + expected_output_length += strlen(".") + precision; + if (fmt == chars_format::scientific) + expected_output_length += strlen("e+00"); + else if (fmt == chars_format::hex) + expected_output_length += strlen("p+0"); + if (last - first < expected_output_length) + return {{last, errc::value_too_large}}; + + if (sign) + *first++ = '-'; + *first++ = '0'; + if (precision) + { + *first++ = '.'; + memset(first, '0', precision); + first += precision; + } + if (fmt == chars_format::scientific) + { + memcpy(first, "e+00", 4); + first += 4; + } + else if (fmt == chars_format::hex) + { + memcpy(first, "p+0", 3); + first += 3; + } + break; + + case chars_format::general: + default: // case chars_format{}: + expected_output_length = sign + 1; + if (last - first < expected_output_length) + return {{last, errc::value_too_large}}; + + if (sign) + *first++ = '-'; + *first++ = '0'; + break; + } + __glibcxx_assert(first - orig_first == expected_output_length); + return {{first, errc{}}}; + } + +// This subroutine of the floating-point to_chars overloads performs +// hexadecimal formatting. +template<typename T> + static to_chars_result + __floating_to_chars_hex(char* first, char* const last, const T value, + const optional<int> precision) + { + if (precision.has_value() && precision.value() < 0) [[unlikely]] + // A negative precision argument is treated as if it were omitted. + return __floating_to_chars_hex(first, last, value, nullopt); + + __glibcxx_requires_valid_range(first, last); + + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; + constexpr bool has_implicit_leading_bit + = floating_type_traits<T>::has_implicit_leading_bit; + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; + constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1; + using mantissa_t = typename floating_type_traits<T>::mantissa_t; + constexpr int mantissa_t_width = sizeof(mantissa_t) * __CHAR_BIT__; + + if (auto result = __handle_special_value(first, last, value, + chars_format::hex, + precision.value_or(0))) + return *result; + + // Extract the sign, mantissa and exponent from the value. + const auto [ieee_mantissa, biased_exponent, sign] = get_ieee_repr(value); + const bool is_normal_number = (biased_exponent != 0); + + // Calculate the unbiased exponent. + const int32_t unbiased_exponent = (is_normal_number + ? biased_exponent - exponent_bias + : 1 - exponent_bias); + + // Shift the mantissa so that its bitwidth is a multiple of 4. + constexpr unsigned rounded_mantissa_bits = (mantissa_bits + 3) / 4 * 4; + static_assert(mantissa_t_width >= rounded_mantissa_bits); + mantissa_t effective_mantissa + = ieee_mantissa << (rounded_mantissa_bits - mantissa_bits); + if (is_normal_number) + { + if constexpr (has_implicit_leading_bit) + // Restore the mantissa's implicit leading bit. + effective_mantissa |= mantissa_t{1} << rounded_mantissa_bits; + else + // The explicit mantissa bit should already be set. + __glibcxx_assert(effective_mantissa & (mantissa_t{1} << (mantissa_bits + - 1u))); + } + + // Compute the shortest precision needed to print this value exactly, + // disregarding trailing zeros. + constexpr int full_hex_precision = (has_implicit_leading_bit + ? (mantissa_bits + 3) / 4 + // With an explicit leading bit, we + // use the four leading nibbles as the + // hexit before the decimal point. + : (mantissa_bits - 4 + 3) / 4); + const int trailing_zeros = __countr_zero(effective_mantissa) / 4; + const int shortest_full_precision = full_hex_precision - trailing_zeros; + __glibcxx_assert(shortest_full_precision >= 0); + + int written_exponent = unbiased_exponent; + const int effective_precision = precision.value_or(shortest_full_precision); + if (effective_precision < shortest_full_precision) + { + // When limiting the precision, we need to determine how to round the + // least significant printed hexit. The following branchless + // bit-level-parallel technique computes whether to round up the + // mantissa bit at index N (according to round-to-nearest rules) when + // dropping N bits of precision, for each index N in the bit vector. + // This technique is borrowed from the MSVC implementation. + using bitvec = mantissa_t; + const bitvec round_bit = effective_mantissa << 1; + const bitvec has_tail_bits = round_bit - 1; + const bitvec lsb_bit = effective_mantissa; + const bitvec should_round = round_bit & (has_tail_bits | lsb_bit); + + const int dropped_bits = 4*(full_hex_precision - effective_precision); + // Mask out the dropped nibbles. + effective_mantissa >>= dropped_bits; + effective_mantissa <<= dropped_bits; + if (should_round & (mantissa_t{1} << dropped_bits)) + { + // Round up the least significant nibble. + effective_mantissa += mantissa_t{1} << dropped_bits; + // Check and adjust for overflow of the leading nibble. When the + // type has an implicit leading bit, then the leading nibble + // before rounding is either 0 or 1, so it can't overflow. + if constexpr (!has_implicit_leading_bit) + { + // The only supported floating-point type with explicit + // leading mantissa bit is LDK_FLOAT80, i.e. x86 80-bit + // extended precision, and so we hardcode the below overflow + // check+adjustment for this type. + static_assert(mantissa_t_width == 64 + && rounded_mantissa_bits == 64); + if (effective_mantissa == 0) + { + // We rounded up the least significant nibble and the + // mantissa overflowed, e.g f.fcp+10 with precision=1 + // became 10.0p+10. Absorb this extra hexit into the + // exponent to obtain 1.0p+14. + effective_mantissa + = mantissa_t{1} << (rounded_mantissa_bits - 4); + written_exponent += 4; + } + } + } + } + + // Compute the leading hexit and mask it out from the mantissa. + char leading_hexit; + if constexpr (has_implicit_leading_bit) + { + const unsigned nibble = effective_mantissa >> rounded_mantissa_bits; + __glibcxx_assert(nibble <= 2); + leading_hexit = '0' + nibble; + effective_mantissa &= ~(mantissa_t{0b11} << rounded_mantissa_bits); + } + else + { + const unsigned nibble = effective_mantissa >> (rounded_mantissa_bits-4); + __glibcxx_assert(nibble < 16); + leading_hexit = "0123456789abcdef"[nibble]; + effective_mantissa &= ~(mantissa_t{0b1111} << (rounded_mantissa_bits-4)); + written_exponent -= 3; + } + + // Now before we start writing the string, determine the total length of + // the output string and perform a single bounds check. + int expected_output_length = sign + 1; + if (effective_precision != 0) + expected_output_length += strlen(".") + effective_precision; + const int abs_written_exponent = abs(written_exponent); + expected_output_length += (abs_written_exponent >= 10000 ? strlen("p+ddddd") + : abs_written_exponent >= 1000 ? strlen("p+dddd") + : abs_written_exponent >= 100 ? strlen("p+ddd") + : abs_written_exponent >= 10 ? strlen("p+dd") + : strlen("p+d")); + if (last - first < expected_output_length) + return {last, errc::value_too_large}; + + const auto saved_first = first; + // Write the negative sign and the leading hexit. + if (sign) + *first++ = '-'; + *first++ = leading_hexit; + + if (effective_precision > 0) + { + *first++ = '.'; + int written_hexits = 0; + // Extract and mask out the leading nibble after the decimal point, + // write its corresponding hexit, and repeat until the mantissa is + // empty. + int nibble_offset = rounded_mantissa_bits; + if constexpr (!has_implicit_leading_bit) + // We already printed the entire leading hexit. + nibble_offset -= 4; + while (effective_mantissa != 0) + { + nibble_offset -= 4; + const unsigned nibble = effective_mantissa >> nibble_offset; + __glibcxx_assert(nibble < 16); + *first++ = "0123456789abcdef"[nibble]; + ++written_hexits; + effective_mantissa &= ~(mantissa_t{0b1111} << nibble_offset); + } + __glibcxx_assert(nibble_offset >= 0); + __glibcxx_assert(written_hexits <= effective_precision); + // Since the mantissa is now empty, every hexit hereafter must be '0'. + if (int remaining_hexits = effective_precision - written_hexits) + { + memset(first, '0', remaining_hexits); + first += remaining_hexits; + } + } + + // Finally, write the exponent. + *first++ = 'p'; + if (written_exponent >= 0) + *first++ = '+'; + const to_chars_result result = to_chars(first, last, written_exponent); + __glibcxx_assert(result.ec == errc{} + && result.ptr == saved_first + expected_output_length); + return result; + } + +template<typename T> + static to_chars_result + __floating_to_chars_shortest(char* first, char* const last, const T value, + chars_format fmt) + { + if (fmt == chars_format::hex) + return __floating_to_chars_hex(first, last, value, nullopt); + + __glibcxx_assert(fmt == chars_format::fixed + || fmt == chars_format::scientific </cut>
Hi Patrick,
Is it expected that libstdc++.so grew by 12% from this one patch?
Thanks,
-- Maxim Kuvyrkov https://www.linaro.org
On 21 Sep 2021, at 13:01, ci_notify@linaro.org wrote:
After gcc commit 3c57e692357c79ee7623dfc1586652aee2aefb8f Author: Patrick Palka ppalka@redhat.com
libstdc++: Add floating-point std::to_chars implementation
the following hot functions grew in size by more than 10% (but their benchmarks grew in size by less than 1%):
- 447.dealII:libstdc++.so.6.0.29 grew in size by 12% from 1245370 to 1391240 bytes
Below reproducer instructions can be used to re-build both "first_bad" and "last_good" cross-toolchains used in this bisection. Naturally, the scripts will fail when triggerring benchmarking jobs if you don't have access to Linaro TCWG CI.
For your convenience, we have uploaded tarballs with pre-processed source and assembly files at:
- First_bad save-temps: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-...
- Last_good save-temps: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-...
- Baseline save-temps: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-...
Configuration:
- Benchmark: SPEC CPU2006
- Toolchain: Clang + Glibc + LLVM Linker
- Version: all components were built from their latest release branch
- Target: arm-linux-gnueabihf
- Compiler flags: -Os -mthumb
- Hardware: APM Mustang 8x X-Gene1
This benchmarking CI is work-in-progress, and we welcome feedback and suggestions at linaro-toolchain@lists.linaro.org . In our improvement plans is to add support for SPEC CPU2017 benchmarks and provide "perf report/annotate" data behind these reports.
THIS IS THE END OF INTERESTING STUFF. BELOW ARE LINKS TO BUILDS, REPRODUCTION INSTRUCTIONS, AND THE RAW COMMIT.
This commit has regressed these CI configurations:
- tcwg_bmk_llvm_apm/llvm-release-arm-spec2k6-Os
First_bad build: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... Last_good build: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... Baseline build: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... Even more details: https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-...
Reproduce builds:
<cut> mkdir investigate-gcc-3c57e692357c79ee7623dfc1586652aee2aefb8f cd investigate-gcc-3c57e692357c79ee7623dfc1586652aee2aefb8f
# Fetch scripts git clone https://git.linaro.org/toolchain/jenkins-scripts
# Fetch manifests and test.sh script mkdir -p artifacts/manifests curl -o artifacts/manifests/build-baseline.sh https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... --fail curl -o artifacts/manifests/build-parameters.sh https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... --fail curl -o artifacts/test.sh https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-... --fail chmod +x artifacts/test.sh
# Reproduce the baseline build (build all pre-requisites) ./jenkins-scripts/tcwg_bmk-build.sh @@ artifacts/manifests/build-baseline.sh
# Save baseline build state (which is then restored in artifacts/test.sh) mkdir -p ./bisect rsync -a --del --delete-excluded --exclude /bisect/ --exclude /artifacts/ --exclude /gcc/ ./ ./bisect/baseline/
cd gcc
# Reproduce first_bad build git checkout --detach 3c57e692357c79ee7623dfc1586652aee2aefb8f ../artifacts/test.sh
# Reproduce last_good build git checkout --detach 5033506993ef92589373270a8e8dbbf50e3ebef1 ../artifacts/test.sh
cd ..
</cut>
Full commit (up to 1000 lines):
<cut> commit 3c57e692357c79ee7623dfc1586652aee2aefb8f Author: Patrick Palka <ppalka@redhat.com> Date: Thu Dec 17 23:11:34 2020 -0500
libstdc++: Add floating-point std::to_chars implementation
This implements the floating-point std::to_chars overloads for float, double and long double. We use the Ryu library to compute the shortest round-trippable fixed and scientific forms for float, double and long double. We also use Ryu for performing explicit-precision fixed and scientific formatting for float and double. For explicit-precision formatting for long double we fall back to using printf. Hexadecimal formatting for float, double and long double is implemented from scratch.
The supported long double binary formats are binary64, binary80 (x86 80-bit extended precision), binary128 and ibm128.
Much of the complexity of the implementation is in computing the exact output length before handing it off to Ryu (which doesn't do bounds checking). In some cases it's hard to compute the output length beforehand, so in these cases we instead compute an upper bound on the output length and use a sufficiently-sized intermediate buffer only if necessary.
Another source of complexity is in the general-with-precision formatting mode, where we need to do zero-trimming of the string returned by Ryu, and where we also take care to avoid having to format the number through Ryu a second time when the general formatting mode resolves to fixed (which we determine by doing a scientific formatting first and inspecting the scientific exponent). We avoid going through Ryu twice by instead transforming the scientific form to the corresponding fixed form via in-place string manipulation.
This implementation is non-conforming in a couple of ways:
For the shortest hexadecimal formatting, we currently follow the Microsoft implementation's decision to be consistent with the output of printf's '%a' specifier at the expense of sometimes not printing the shortest representation. For example, the shortest hex form for the number 1.08p+0 is 2.1p-1, but we output the former instead of the latter, as does printf.
The Ryu routine generic_binary_to_decimal that we use for performing shortest formatting for large floating point types is implemented using the __int128 type, but some targets with a large long double type lack __int128 (e.g. i686), so we can't perform shortest formatting of long double on such targets through Ryu. As a temporary stopgap this patch makes the long double to_chars overloads just dispatch to the double overloads on these targets, which means we lose precision in the output. (We could potentially fix this by writing a specialized version of Ryu's generic_binary_to_decimal routine that uses uint64_t instead of __int128.) [Though I wonder if there's a better way to work around the lack of __int128 on i686 specifically?]
Our shortest formatting for __ibm128 doesn't guarantee the round-trip property if the difference between the high- and low-order exponent is large. This is because we treat __ibm128 as if it has a contiguous 105-bit mantissa by merging the mantissas of the high- and low-order parts (using code extracted from glibc), so we potentially lose precision from the low-order part. This seems to be consistent with how glibc printf formats __ibm128.
libstdc++-v3/ChangeLog:
* config/abi/pre/gnu.ver: Add new exports. * include/std/charconv (to_chars): Declare the floating-point overloads for float, double and long double. * src/c++17/Makefile.am (sources): Add floating_to_chars.cc. * src/c++17/Makefile.in: Regenerate. * src/c++17/floating_to_chars.cc: New file. (to_chars): Define for float, double and long double. * testsuite/20_util/to_chars/long_double.cc: New test.
libstdc++-v3/config/abi/pre/gnu.ver | 7 + libstdc++-v3/include/std/charconv | 24 + libstdc++-v3/src/c++17/Makefile.am | 1 + libstdc++-v3/src/c++17/Makefile.in | 3 +- libstdc++-v3/src/c++17/floating_to_chars.cc | 1563 ++++++++++++++++++++ .../testsuite/20_util/to_chars/long_double.cc | 199 +++ 6 files changed, 1796 insertions(+), 1 deletion(-)
diff --git a/libstdc++-v3/config/abi/pre/gnu.ver b/libstdc++-v3/config/abi/pre/gnu.ver index 4b4bd8ab6da..05e0a512247 100644 --- a/libstdc++-v3/config/abi/pre/gnu.ver +++ b/libstdc++-v3/config/abi/pre/gnu.ver @@ -2393,6 +2393,13 @@ GLIBCXX_3.4.29 { # std::once_flag::_M_finish(bool) _ZNSt9once_flag9_M_finishEb;
- # std::to_chars(char*, char*, [float|double|long double])
- _ZSt8to_charsPcS_[defg];
- # std::to_chars(char*, char*, [float|double|long double], chars_format)
- _ZSt8to_charsPcS_[defg]St12chars_format;
- # std::to_chars(char*, char*, [float|double|long double], chars_format, int)
- _ZSt8to_charsPcS_[defg]St12chars_formati;
} GLIBCXX_3.4.28;
# Symbols in the support library (libsupc++) have their own tag. diff --git a/libstdc++-v3/include/std/charconv b/libstdc++-v3/include/std/charconv index dd1ebdf8322..b57b0a16db2 100644 --- a/libstdc++-v3/include/std/charconv +++ b/libstdc++-v3/include/std/charconv @@ -702,6 +702,30 @@ namespace __detail chars_format __fmt = chars_format::general) noexcept; #endif
- // Floating-point std::to_chars
- // Overloads for float.
- to_chars_result to_chars(char* __first, char* __last, float __value) noexcept;
- to_chars_result to_chars(char* __first, char* __last, float __value,
chars_format __fmt) noexcept;
- to_chars_result to_chars(char* __first, char* __last, float __value,
chars_format __fmt, int __precision) noexcept;
- // Overloads for double.
- to_chars_result to_chars(char* __first, char* __last, double __value) noexcept;
- to_chars_result to_chars(char* __first, char* __last, double __value,
chars_format __fmt) noexcept;
- to_chars_result to_chars(char* __first, char* __last, double __value,
chars_format __fmt, int __precision) noexcept;
- // Overloads for long double.
- to_chars_result to_chars(char* __first, char* __last, long double __value)
- noexcept;
- to_chars_result to_chars(char* __first, char* __last, long double __value,
chars_format __fmt) noexcept;
- to_chars_result to_chars(char* __first, char* __last, long double __value,
chars_format __fmt, int __precision) noexcept;
_GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // C++14 diff --git a/libstdc++-v3/src/c++17/Makefile.am b/libstdc++-v3/src/c++17/Makefile.am index 37cdb53c076..2ec5ed621ca 100644 --- a/libstdc++-v3/src/c++17/Makefile.am +++ b/libstdc++-v3/src/c++17/Makefile.am @@ -51,6 +51,7 @@ endif
sources = \ floating_from_chars.cc \
- floating_to_chars.cc \ fs_dir.cc \ fs_ops.cc \ fs_path.cc \
diff --git a/libstdc++-v3/src/c++17/Makefile.in b/libstdc++-v3/src/c++17/Makefile.in index ccae721ab3f..9b36b7a916c 100644 --- a/libstdc++-v3/src/c++17/Makefile.in +++ b/libstdc++-v3/src/c++17/Makefile.in @@ -124,7 +124,7 @@ LTLIBRARIES = $(noinst_LTLIBRARIES) libc__17convenience_la_LIBADD = @ENABLE_DUAL_ABI_TRUE@am__objects_1 = cow-fs_dir.lo cow-fs_ops.lo \ @ENABLE_DUAL_ABI_TRUE@ cow-fs_path.lo -am__objects_2 = floating_from_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ +am__objects_2 = floating_from_chars.lo floating_to_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ memory_resource.lo $(am__objects_1) @ENABLE_DUAL_ABI_TRUE@am__objects_3 = cow-string-inst.lo @ENABLE_EXTERN_TEMPLATE_TRUE@am__objects_4 = ostream-inst.lo \ @@ -440,6 +440,7 @@ headers =
sources = \ floating_from_chars.cc \
- floating_to_chars.cc \ fs_dir.cc \ fs_ops.cc \ fs_path.cc \
diff --git a/libstdc++-v3/src/c++17/floating_to_chars.cc b/libstdc++-v3/src/c++17/floating_to_chars.cc new file mode 100644 index 00000000000..dd83f5eea93 --- /dev/null +++ b/libstdc++-v3/src/c++17/floating_to_chars.cc @@ -0,0 +1,1563 @@ +// std::to_chars implementation for floating-point types -*- C++ -*-
+// Copyright (C) 2020 Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version.
+// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details.
+// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation.
+// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// http://www.gnu.org/licenses/.
+// Activate __glibcxx_assert within this file to shake out any bugs. +#define _GLIBCXX_ASSERTIONS 1
+#include <charconv>
+#include <bit> +#include <cfenv> +#include <cassert> +#include <cmath> +#include <cstdio> +#include <cstring> +#include <langinfo.h> +#include <optional> +#include <string_view> +#include <type_traits>
+// Determine the binary format of 'long double'.
+// We support the binary64, float80 (i.e. x86 80-bit extended precision), +// binary128, and ibm128 formats. +#define LDK_UNSUPPORTED 0 +#define LDK_BINARY64 1 +#define LDK_FLOAT80 2 +#define LDK_BINARY128 3 +#define LDK_IBM128 4
+#if __LDBL_MANT_DIG__ == __DBL_MANT_DIG__ +# define LONG_DOUBLE_KIND LDK_BINARY64 +#elif defined(__SIZEOF_INT128__) +// The Ryu routines need a 128-bit integer type in order to do shortest +// formatting of types larger than 64-bit double, so without __int128 we can't +// support any large long double format. This is the case for e.g. i386. +# if __LDBL_MANT_DIG__ == 64 +# define LONG_DOUBLE_KIND LDK_FLOAT80 +# elif __LDBL_MANT_DIG__ == 113 +# define LONG_DOUBLE_KIND LDK_BINARY128 +# elif __LDBL_MANT_DIG__ == 106 +# define LONG_DOUBLE_KIND LDK_IBM128 +# endif +#endif +#if !defined(LONG_DOUBLE_KIND) +# define LONG_DOUBLE_KIND LDK_UNSUPPORTED +#endif
+namespace +{
- namespace ryu
- {
+#include "ryu/common.h" +#include "ryu/digit_table.h" +#include "ryu/d2s_intrinsics.h" +#include "ryu/d2s_full_table.h" +#include "ryu/d2fixed_full_table.h" +#include "ryu/f2s_intrinsics.h" +#include "ryu/d2s.c" +#include "ryu/d2fixed.c" +#include "ryu/f2s.c"
+#ifdef __SIZEOF_INT128__
- namespace generic128
- {
// Put the generic Ryu bits in their own namespace to avoid name conflicts.
+# include "ryu/generic_128.h" +# include "ryu/ryu_generic_128.h" +# include "ryu/generic_128.c"
- } // namespace generic128
- using generic128::floating_decimal_128;
- using generic128::generic_binary_to_decimal;
- int
- to_chars(const floating_decimal_128 v, char* const result)
- { return generic128::generic_to_chars(v, result); }
+#endif
- } // namespace ryu
- // A traits class that contains pertinent information about the binary
- // format of each of the floating-point types we support.
- template<typename T>
- struct floating_type_traits
- { };
- template<>
- struct floating_type_traits<float>
- {
// We (and Ryu) assume float has the IEEE binary32 format.
static_assert(__FLT_MANT_DIG__ == 24);
static constexpr int mantissa_bits = 23;
static constexpr int exponent_bits = 8;
static constexpr bool has_implicit_leading_bit = true;
using mantissa_t = uint32_t;
using shortest_scientific_t = ryu::floating_decimal_32;
static constexpr uint64_t pow10_adjustment_tab[]
- = { 0b0000000000011101011100110101100101101110000000000000000000000000 };
- };
- template<>
- struct floating_type_traits<double>
- {
// We (and Ryu) assume double has the IEEE binary64 format.
static_assert(__DBL_MANT_DIG__ == 53);
static constexpr int mantissa_bits = 52;
static constexpr int exponent_bits = 11;
static constexpr bool has_implicit_leading_bit = true;
using mantissa_t = uint64_t;
using shortest_scientific_t = ryu::floating_decimal_64;
static constexpr uint64_t pow10_adjustment_tab[]
- = { 0b0000000000000000000000011000110101110111000001100101110000111100,
0b0111100011110101011000011110000000110110010101011000001110011111,
0b0101101100000000011100100100111100110110110100010001010101110000,
0b0011110010111000101111110101100011101100010001010000000101100111,
0b0001010000011001011100100001010000010101101000001101000000000000 };
- };
+#if LONG_DOUBLE_KIND == LDK_BINARY64
- // When long double is equivalent to double, we just forward the long double
- // overloads to the double overloads, so we don't need to define a a
- // floating_type_traits<long double> specialization in this case.
+#elif LONG_DOUBLE_KIND == LDK_FLOAT80
- template<>
- struct floating_type_traits<long double>
- {
static constexpr int mantissa_bits = 64;
static constexpr int exponent_bits = 15;
static constexpr bool has_implicit_leading_bit = false;
using mantissa_t = uint64_t;
using shortest_scientific_t = ryu::floating_decimal_128;
static constexpr uint64_t pow10_adjustment_tab[]
- = { 0b0000000000000000000000000000110101011111110100010100110000011101,
0b1001100101001111010011011111101000101111110001011001011101110000,
0b0000101111111011110010001000001010111101011110111111010100011001,
0b0011100000011111001101101011111001111100100010000101001111101001,
0b0100100100000000100111010010101110011000110001101101110011001010,
0b0111100111100010100000010011000010010110101111110101000011110100,
0b1010100111100010011110000011011101101100010110000110101010101010,
0b0000001111001111000000101100111011011000101000110011101100110010,
0b0111000011100100101101010100001101111110101111001000010011111111,
0b0010111000100110100100100010101100111010110001101010010111001000,
0b0000100000010110000011001001000111000001111010100101101000001111,
0b0010101011101000111100001011000010011101000101010010010000101111,
0b1011111011101101110010101011010001111000101000101101011001100011,
0b1010111011011011110111110011001010000010011001110100101101000101,
0b0011000001110110011010010000011100100011001011001100001101010110,
0b0100011111011000111111101000011110000010111110101001000000001001,
0b1110000001110001001101101110011000100000001010000111100010111010,
0b1110001001010011101000111000001000010100110000010110100011110000,
0b0000011010110000110001111000011111000011001101001101001001000110,
0b1010010111001000101001100101010110100100100010010010000101000010,
0b1011001110000111100010100110000011100011111001110111001100000101,
0b0110101001001000010110001000010001010101110101100001111100011001,
0b1111100011110101011110011010101001010010100011000010110001101001,
0b0100000100001000111101011100010011011111011001000000001100011000,
0b1110111111000111100101110111110000000011001110011100011011011001,
0b1100001100100000010001100011011000111011110000110011010101000011,
0b1111111011100111011101001111111000010000001111010111110010000100,
0b1110111001111110101111000101000000001010001110011010001000111010,
0b1000010001011000101111111010110011111101110101101001111000111010,
0b0100000111101001000111011001101000001010111011101001101111000100,
0b0000011100110001000111011100111100110001101111111010110111100000,
0b0000011101011100100110010011110101010100010011110010010111010000,
0b0011011001100111110101111100001001101110101101001110110011110110,
0b1011000101000001110100111001100100111100110011110000000001101000,
0b1011100011110100001001110101010110111001000000001011101001011110,
0b1111001010010010100000010110101010101011101000101000000000001100,
0b1000001111100100111001110101100001010011111111000001000011110000,
0b0001011101001000010000101101111000001110101100110011001100110111,
0b1110011100000010101011011111001010111101111110100000011100000011,
0b1001110110011100101010011110100010110001001110110000101011100110,
0b1001101000100011100111010000011011100001000000110101100100001001,
0b1010111000101000101101010111000010001100001010100011111100000100,
0b0111101000100011000101101011111011100010001101110111001111001011,
0b1110100111010110001110110110000000010110100011110000010001111100,
0b1100010100011010001011001000111001010101011110100101011001000000,
0b0000110001111001100110010110111010101101001101000000000010010101,
0b0001110111101000001111101010110010010000111110111100000111110100,
0b0111110111001001111000110001101101001010101110110101111110000100,
0b0000111110111010101111100010111010011100010110011011011001000001,
0b1010010100100100101110111111111000101100000010111111101101000110,
0b1000100111111101100011001101000110001000000100010101010100001101,
0b1100101010101000111100101100001000110001110010100000000010110101,
0b1010000100111101100100101010010110100010000000110101101110000100,
0b1011111011110001110000100100000000001010111010001101100000100100,
0b0111101101100011001110011100000001000101101101111000100111011111,
0b0100111010010011011001010011110100001100111010010101111111100011,
0b0010001001011000111000001100110111110111110010100011000110110110,
0b0101010110000000010000100000110100111011111101000100000111010010,
0b0110000011011101000001010100110101101110011100110101000000001001,
0b1101100110100000011000001111000100100100110001100110101010101100,
0b0010100101010110010010001010101000011111111111001011001010001111,
0b0111001010001111001100111001010101001000110101000011110000001000,
0b0110010011001001001111110001010010001011010010001101110110110011,
0b0110010100111011000100111000001001101011111001110010111110111111,
0b0101110111001001101100110100101001110010101110011001101110001000,
0b0100110101010111011010001100010111100011010011111001010100111000,
0b0111000110110111011110100100010111000110000110110110110001111110,
0b1000101101010100100100111110100011110110110010011001110011110101,
0b1001101110101001010100111101101011000101000010110101101111110000,
0b0100100101001011011001001011000010001101001010010001010110101000,
0b0010100001001011100110101000010110000111000111000011100101011011,
0b0110111000011001111101101011111010001000000010101000101010011110,
0b1000110110100001111011000001111100001001000000010110010100100100,
0b1001110100011111100111101011010000010101011100101000010010100110,
0b0001010110101110100010101010001110110110100011101010001001111100,
0b1010100101101100000010110011100110100010010000100100001110000100,
0b0001000000010000001010000010100110000001110100111001110111101101,
0b1100000000000000000000000000000000000000000000000000000000000000 };
- };
+#elif LONG_DOUBLE_KIND == LDK_BINARY128
- template<>
- struct floating_type_traits<long double>
- {
static constexpr int mantissa_bits = 112;
static constexpr int exponent_bits = 15;
static constexpr bool has_implicit_leading_bit = true;
using mantissa_t = unsigned __int128;
using shortest_scientific_t = ryu::floating_decimal_128;
static constexpr uint64_t pow10_adjustment_tab[]
- = { 0b0000000000000000000000000000000000000000000000000100000010000000,
0b1011001111110100000100010101101110011100100110000110010110011000,
0b1010100010001101111111000000001101010010100010010000111011110111,
0b1011111001110001111000011111000010110111000111110100101010100101,
0b0110100110011110011011000011000010011001110001001001010011100011,
0b0000011111110010101111101011101010000110011111100111001110100111,
0b0100010101010110000010111011110100000010011001001010001110111101,
0b1101110111000010001101100000110100000111001001101011000101011011,
0b0100111011101101010000001101011000101100101110010010110000101011,
0b0100000110111000000110101000010011101000110100010110000011101101,
0b1011001101001000100001010001100100001111011101010101110001010110,
0b1000000001000000101001110010110010001111101101010101001100000110,
0b0101110110100110000110000001001010111110001110010000111111010011,
0b1010001111100111000100011100100100111100100101000001011001000111,
0b1010011000011100110101100111001011100101111111100001110100000100,
0b1100011100100010100000110001001010000000100000001001010111011101,
0b0101110000100011001111101101000000100110000010010111010001111010,
0b0100111100011010110111101000100110000111001001101100000001111100,
0b1100100100111110101011000100000101011010110111000111110100110101,
0b0110010000010111010100110011000000111010000010111011010110000100,
0b0101001001010010110111010111000101011100000111100111000001110010,
0b1101111111001011101010110001000111011010111101001011010110100100,
0b0001000100110000011111101011001101110010110110010000000011100100,
0b0001000000000101001001001000000000011000100011001110101001001110,
0b0010010010001000111010011011100001000110011011011110110100111000,
0b0000100110101100000111100010100100011100110111011100001111001100,
0b1011111010001110001100000011110111111111100000001011111111101100,
0b0000011100001111010101110000100110111100101101110111101001000001,
0b1100010001110110111100001001001101101000011100000010110101001011,
0b0100101001101011111001011110101101100011011111011100101010101111,
0b0001101001111001110000101101101100001011010001011110011101000010,
0b1111000000101001101111011010110011101110100001011011001011100010,
0b0101001010111101101100001111100010010110001101001000001101100100,
0b0101100101011110001100101011111000111001111001001001101101100001,
0b1111001101010010100100011011000110110010001111000111010001001101,
0b0001110010011000000001000110110111011000011100001000011001110111,
0b0100001011011011011011110011101100100101111111101100101000001110,
0b0101011110111101010111100111101111000101111111111110100011011010,
0b1110101010001001110100000010110111010111111010111110100110010110,
0b1010001111100001001100101000110100001100011100110010000011010111,
0b1111111101101111000100111100000101011000001110011011101010111001,
0b1111101100001110100101111101011001000100000101110000110010100011,
0b1001010110110101101101000101010001010000101011011111010011010000,
0b0111001110110011101001100111000001000100001010110000010000001101,
0b0101111100111110100111011001111001111011011110010111010011101010,
0b1110111000000001100100111001100100110001011011001110101111110111,
0b0001010001001101010111101010011111000011110001101101011001111111,
0b0101000011100011010010001101100001011101011010100110101100100010,
0b0001000101011000100101111100110110000101101101111000110001001011,
0b0101100101001011011000010101000000010100011100101101000010011111,
0b1000010010001011101001011010100010111011110100110011011000100111,
0b1000011011100001010111010111010011101100100010010010100100101001,
0b1001001001010111110101000010111010000000101111010100001010010010,
0b0011011110110010010101111011000001000000000011011111000011111011,
0b1011000110100011001110000001000100000001011100010111010010011110,
0b0111101110110101110111110000011000000100011100011000101101101110,
0b1001100101111011011100011110101011001111100111101010101010110111,
0b1100110010010001100011001111010000000100011101001111011101001111,
0b1000111001111010100101000010000100000001001100101010001011001101,
0b0011101011110000110010100101010100110010100001000010101011111101,
0b1100000000000110000010101011000000011101000110011111100010111111,
0b0010100110000011011100010110111100010110101100110011101110001101,
0b0010111101010011111000111001111100110111111100100011110001101110,
0b1001110111001001101001001001011000010100110001000000100011010110,
0b0011110101100111011011111100001000011001010100111100100101111010,
0b0010001101000011000010100101110000010101101000100110000100001010,
0b0010000010100110010101100101110011101111000111111111001001100001,
0b0100111111011011011011100111111011000010011101101111011111110110,
0b1111111111010110101011101000100101110100001110001001101011100111,
0b1011111101000101110000111100100010111010100001010000010010110010,
0b1111010101001011101011101010000100110110001110111100100110111111,
0b1011001101000001001101000010101010010110010001100001011100011010,
0b0101001011011101010001110100010000010001111100100100100001001101,
0b0010100000111001100011000101100101000001111100111001101000000010,
0b1011001111010101011001000100100110100100110111110100000110111000,
0b0101011111010011100011010010111101110010100001111111100010001001,
0b0010111011101100100000000000001111111010011101100111100001001101,
0b1101000000000000000000000000000000000000000000000000000000000000 };
- };
+#elif LONG_DOUBLE_KIND == LDK_IBM128
- template<>
- struct floating_type_traits<long double>
- {
static constexpr int mantissa_bits = 105;
static constexpr int exponent_bits = 11;
static constexpr bool has_implicit_leading_bit = true;
using mantissa_t = unsigned __int128;
using shortest_scientific_t = ryu::floating_decimal_128;
static constexpr uint64_t pow10_adjustment_tab[]
- = { 0b0000000000000000000000000000000000000000000000001000000100000000,
0b0000000000000000000100000000000000000000001000000000000000000010,
0b0000100000000000000000001001000000000000000001100100000000000000,
0b0011000000000000000000000000000001110000010000000000000000000000,
0b0000100000000000001000000000000000000000000000100000000000000000 };
- };
+#endif
- // An IEEE-style decomposition of a floating-point value of type T.
- template<typename T>
- struct ieee_t
- {
typename floating_type_traits<T>::mantissa_t mantissa;
uint32_t biased_exponent;
bool sign;
- };
- // Decompose the floating-point value into its IEEE components.
- template<typename T>
- ieee_t<T>
- get_ieee_repr(const T value)
- {
constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
constexpr int total_bits = mantissa_bits + exponent_bits + 1;
constexpr auto get_uint_t = [] {
- if constexpr (total_bits <= 32)
return uint32_t{};
- else if constexpr (total_bits <= 64)
return uint64_t{};
+#ifdef __SIZEOF_INT128__
- else if constexpr (total_bits <= 128)
return (unsigned __int128){};
+#endif
};
using uint_t = decltype(get_uint_t());
uint_t value_bits = 0;
memcpy(&value_bits, &value, sizeof(value));
ieee_t<T> ieee_repr;
ieee_repr.mantissa = value_bits & ((uint_t{1} << mantissa_bits) - 1u);
ieee_repr.biased_exponent
- = (value_bits >> mantissa_bits) & ((uint_t{1} << exponent_bits) - 1u);
ieee_repr.sign = (value_bits >> (mantissa_bits + exponent_bits)) & 1;
return ieee_repr;
- }
+#if LONG_DOUBLE_KIND == LDK_IBM128
- template<>
- ieee_t<long double>
- get_ieee_repr(const long double value)
- {
// The layout of __ibm128 isn't compatible with the standard IEEE format.
// So we transform it into an IEEE-compatible format, suitable for
// consumption by the generic Ryu API, with an 11-bit exponent and 105-bit
// mantissa (plus an implicit leading bit). We use the exponent and sign
// of the high part, and we merge the mantissa of the high part with the
// mantissa (and the implicit leading bit) of the low part.
using uint_t = unsigned __int128;
uint_t value_bits = 0;
memcpy(&value_bits, &value, sizeof(value_bits));
const uint64_t value_hi = value_bits;
const uint64_t value_lo = value_bits >> 64;
uint64_t mantissa_hi = value_hi & ((1ull << 52) - 1);
unsigned exponent_hi = (value_hi >> 52) & ((1ull << 11) - 1);
const int sign_hi = (value_hi >> 63) & 1;
uint64_t mantissa_lo = value_lo & ((1ull << 52) - 1);
const unsigned exponent_lo = (value_lo >> 52) & ((1ull << 11) - 1);
const int sign_lo = (value_lo >> 63) & 1;
- {
// The following code for adjusting the low-part mantissa to combine
// it with the high-part mantissa is taken from the glibc source file
// sysdeps/ieee754/ldbl-128ibm/printf_fphex.c.
mantissa_lo <<= 7;
if (exponent_lo != 0)
mantissa_lo |= (1ull << (52 + 7));
else
mantissa_lo <<= 1;
const int ediff = exponent_hi - exponent_lo - 53;
if (ediff > 63)
mantissa_lo = 0;
else if (ediff > 0)
mantissa_lo >>= ediff;
else if (ediff < 0)
mantissa_lo <<= -ediff;
if (sign_lo != sign_hi && mantissa_lo != 0)
{
mantissa_lo = (1ull << 60) - mantissa_lo;
if (mantissa_hi == 0)
{
mantissa_hi = 0xffffffffffffeLL | (mantissa_lo >> 59);
mantissa_lo = 0xfffffffffffffffLL & (mantissa_lo << 1);
exponent_hi--;
}
else
mantissa_hi--;
}
- }
ieee_t<long double> ieee_repr;
ieee_repr.mantissa = ((uint_t{mantissa_hi} << 64)
| (uint_t{mantissa_lo} << 4)) >> 11;
ieee_repr.biased_exponent = exponent_hi;
ieee_repr.sign = sign_hi;
return ieee_repr;
- }
+#endif
- // Invoke Ryu to obtain the shortest scientific form for the given
- // floating-point number.
- template<typename T>
- typename floating_type_traits<T>::shortest_scientific_t
- floating_to_shortest_scientific(const T value)
- {
if constexpr (std::is_same_v<T, float>)
- return ryu::floating_to_fd32(value);
else if constexpr (std::is_same_v<T, double>)
- return ryu::floating_to_fd64(value);
+#ifdef __SIZEOF_INT128__
else if constexpr (std::is_same_v<T, long double>)
- {
constexpr int mantissa_bits
= floating_type_traits<T>::mantissa_bits;
constexpr int exponent_bits
= floating_type_traits<T>::exponent_bits;
constexpr bool has_implicit_leading_bit
= floating_type_traits<T>::has_implicit_leading_bit;
const auto [mantissa, exponent, sign] = get_ieee_repr(value);
return ryu::generic_binary_to_decimal(mantissa, exponent, sign,
mantissa_bits, exponent_bits,
!has_implicit_leading_bit);
- }
+#endif
- }
- // This subroutine returns true if the shortest scientific form fd is a
- // positive power of 10, and the floating-point number that has this shortest
- // scientific form is smaller than this power of 10.
- //
- // For instance, the exactly-representable 64-bit number
- // 99999999999999991611392.0 has the shortest scientific form 1e23, so its
- // exact value is smaller than its shortest scientific form.
- //
- // For these powers of 10 the length of the fixed form is one digit less
- // than what the scientific exponent suggests.
- //
- // This subroutine inspects a lookup table to detect when fd is such a
- // "rounded up" power of 10.
- template<typename T>
- bool
- is_rounded_up_pow10_p(const typename
floating_type_traits<T>::shortest_scientific_t fd)
- {
if (fd.exponent < 0 || fd.mantissa != 1) [[likely]]
- return false;
constexpr auto& pow10_adjustment_tab
- = floating_type_traits<T>::pow10_adjustment_tab;
__glibcxx_assert(fd.exponent/64 < (int)std::size(pow10_adjustment_tab));
return (pow10_adjustment_tab[fd.exponent/64]
& (1ull << (63 - fd.exponent%64)));
- }
- int
- get_mantissa_length(const ryu::floating_decimal_32 fd)
- { return ryu::decimalLength9(fd.mantissa); }
- int
- get_mantissa_length(const ryu::floating_decimal_64 fd)
- { return ryu::decimalLength17(fd.mantissa); }
+#ifdef __SIZEOF_INT128__
- int
- get_mantissa_length(const ryu::floating_decimal_128 fd)
- { return ryu::generic128::decimalLength(fd.mantissa); }
+#endif +} // anon namespace
+namespace std _GLIBCXX_VISIBILITY(default) +{ +_GLIBCXX_BEGIN_NAMESPACE_VERSION
+// This subroutine of __floating_to_chars_* handles writing nan, inf and 0 in +// all formatting modes. +template<typename T>
- static optional<to_chars_result>
- __handle_special_value(char* first, char* const last, const T value,
const chars_format fmt, const int precision)
- {
- __glibcxx_assert(precision >= 0);
- string_view str;
- switch (__builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, value))
{
case FP_INFINITE:
- str = "-inf";
- break;
case FP_NAN:
- str = "-nan";
- break;
case FP_ZERO:
- break;
default:
case FP_SUBNORMAL:
case FP_NORMAL: [[likely]]
- return nullopt;
}
- if (!str.empty())
{
- // We're formatting +-inf or +-nan.
- if (!__builtin_signbit(value))
str.remove_prefix(strlen("-"));
- if (last - first < (int)str.length())
return {{last, errc::value_too_large}};
- memcpy(first, &str[0], str.length());
- first += str.length();
- return {{first, errc{}}};
}
- // We're formatting 0.
- __glibcxx_assert(value == 0);
- const auto orig_first = first;
- const bool sign = __builtin_signbit(value);
- int expected_output_length;
- switch (fmt)
{
case chars_format::fixed:
case chars_format::scientific:
case chars_format::hex:
- expected_output_length = sign + 1;
- if (precision)
expected_output_length += strlen(".") + precision;
- if (fmt == chars_format::scientific)
expected_output_length += strlen("e+00");
- else if (fmt == chars_format::hex)
expected_output_length += strlen("p+0");
- if (last - first < expected_output_length)
return {{last, errc::value_too_large}};
- if (sign)
*first++ = '-';
- *first++ = '0';
- if (precision)
{
*first++ = '.';
memset(first, '0', precision);
first += precision;
}
- if (fmt == chars_format::scientific)
{
memcpy(first, "e+00", 4);
first += 4;
}
- else if (fmt == chars_format::hex)
{
memcpy(first, "p+0", 3);
first += 3;
}
- break;
case chars_format::general:
default: // case chars_format{}:
- expected_output_length = sign + 1;
- if (last - first < expected_output_length)
return {{last, errc::value_too_large}};
- if (sign)
*first++ = '-';
- *first++ = '0';
- break;
}
- __glibcxx_assert(first - orig_first == expected_output_length);
- return {{first, errc{}}};
- }
+// This subroutine of the floating-point to_chars overloads performs +// hexadecimal formatting. +template<typename T>
- static to_chars_result
- __floating_to_chars_hex(char* first, char* const last, const T value,
const optional<int> precision)
- {
- if (precision.has_value() && precision.value() < 0) [[unlikely]]
// A negative precision argument is treated as if it were omitted.
return __floating_to_chars_hex(first, last, value, nullopt);
- __glibcxx_requires_valid_range(first, last);
- constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
- constexpr bool has_implicit_leading_bit
= floating_type_traits<T>::has_implicit_leading_bit;
- constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
- constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1;
- using mantissa_t = typename floating_type_traits<T>::mantissa_t;
- constexpr int mantissa_t_width = sizeof(mantissa_t) * __CHAR_BIT__;
- if (auto result = __handle_special_value(first, last, value,
chars_format::hex,
precision.value_or(0)))
return *result;
- // Extract the sign, mantissa and exponent from the value.
- const auto [ieee_mantissa, biased_exponent, sign] = get_ieee_repr(value);
- const bool is_normal_number = (biased_exponent != 0);
- // Calculate the unbiased exponent.
- const int32_t unbiased_exponent = (is_normal_number
? biased_exponent - exponent_bias
: 1 - exponent_bias);
- // Shift the mantissa so that its bitwidth is a multiple of 4.
- constexpr unsigned rounded_mantissa_bits = (mantissa_bits + 3) / 4 * 4;
- static_assert(mantissa_t_width >= rounded_mantissa_bits);
- mantissa_t effective_mantissa
= ieee_mantissa << (rounded_mantissa_bits - mantissa_bits);
- if (is_normal_number)
{
- if constexpr (has_implicit_leading_bit)
// Restore the mantissa's implicit leading bit.
effective_mantissa |= mantissa_t{1} << rounded_mantissa_bits;
- else
// The explicit mantissa bit should already be set.
__glibcxx_assert(effective_mantissa & (mantissa_t{1} << (mantissa_bits
- 1u)));
}
- // Compute the shortest precision needed to print this value exactly,
- // disregarding trailing zeros.
- constexpr int full_hex_precision = (has_implicit_leading_bit
? (mantissa_bits + 3) / 4
// With an explicit leading bit, we
// use the four leading nibbles as the
// hexit before the decimal point.
: (mantissa_bits - 4 + 3) / 4);
- const int trailing_zeros = __countr_zero(effective_mantissa) / 4;
- const int shortest_full_precision = full_hex_precision - trailing_zeros;
- __glibcxx_assert(shortest_full_precision >= 0);
- int written_exponent = unbiased_exponent;
- const int effective_precision = precision.value_or(shortest_full_precision);
- if (effective_precision < shortest_full_precision)
{
- // When limiting the precision, we need to determine how to round the
- // least significant printed hexit. The following branchless
- // bit-level-parallel technique computes whether to round up the
- // mantissa bit at index N (according to round-to-nearest rules) when
- // dropping N bits of precision, for each index N in the bit vector.
- // This technique is borrowed from the MSVC implementation.
- using bitvec = mantissa_t;
- const bitvec round_bit = effective_mantissa << 1;
- const bitvec has_tail_bits = round_bit - 1;
- const bitvec lsb_bit = effective_mantissa;
- const bitvec should_round = round_bit & (has_tail_bits | lsb_bit);
- const int dropped_bits = 4*(full_hex_precision - effective_precision);
- // Mask out the dropped nibbles.
- effective_mantissa >>= dropped_bits;
- effective_mantissa <<= dropped_bits;
- if (should_round & (mantissa_t{1} << dropped_bits))
{
// Round up the least significant nibble.
effective_mantissa += mantissa_t{1} << dropped_bits;
// Check and adjust for overflow of the leading nibble. When the
// type has an implicit leading bit, then the leading nibble
// before rounding is either 0 or 1, so it can't overflow.
if constexpr (!has_implicit_leading_bit)
{
// The only supported floating-point type with explicit
// leading mantissa bit is LDK_FLOAT80, i.e. x86 80-bit
// extended precision, and so we hardcode the below overflow
// check+adjustment for this type.
static_assert(mantissa_t_width == 64
&& rounded_mantissa_bits == 64);
if (effective_mantissa == 0)
{
// We rounded up the least significant nibble and the
// mantissa overflowed, e.g f.fcp+10 with precision=1
// became 10.0p+10. Absorb this extra hexit into the
// exponent to obtain 1.0p+14.
effective_mantissa
= mantissa_t{1} << (rounded_mantissa_bits - 4);
written_exponent += 4;
}
}
}
}
- // Compute the leading hexit and mask it out from the mantissa.
- char leading_hexit;
- if constexpr (has_implicit_leading_bit)
{
- const unsigned nibble = effective_mantissa >> rounded_mantissa_bits;
- __glibcxx_assert(nibble <= 2);
- leading_hexit = '0' + nibble;
- effective_mantissa &= ~(mantissa_t{0b11} << rounded_mantissa_bits);
}
- else
{
- const unsigned nibble = effective_mantissa >> (rounded_mantissa_bits-4);
- __glibcxx_assert(nibble < 16);
- leading_hexit = "0123456789abcdef"[nibble];
- effective_mantissa &= ~(mantissa_t{0b1111} << (rounded_mantissa_bits-4));
- written_exponent -= 3;
}
- // Now before we start writing the string, determine the total length of
- // the output string and perform a single bounds check.
- int expected_output_length = sign + 1;
- if (effective_precision != 0)
expected_output_length += strlen(".") + effective_precision;
- const int abs_written_exponent = abs(written_exponent);
- expected_output_length += (abs_written_exponent >= 10000 ? strlen("p+ddddd")
: abs_written_exponent >= 1000 ? strlen("p+dddd")
: abs_written_exponent >= 100 ? strlen("p+ddd")
: abs_written_exponent >= 10 ? strlen("p+dd")
: strlen("p+d"));
- if (last - first < expected_output_length)
return {last, errc::value_too_large};
- const auto saved_first = first;
- // Write the negative sign and the leading hexit.
- if (sign)
*first++ = '-';
- *first++ = leading_hexit;
- if (effective_precision > 0)
{
- *first++ = '.';
- int written_hexits = 0;
- // Extract and mask out the leading nibble after the decimal point,
- // write its corresponding hexit, and repeat until the mantissa is
- // empty.
- int nibble_offset = rounded_mantissa_bits;
- if constexpr (!has_implicit_leading_bit)
// We already printed the entire leading hexit.
nibble_offset -= 4;
- while (effective_mantissa != 0)
{
nibble_offset -= 4;
const unsigned nibble = effective_mantissa >> nibble_offset;
__glibcxx_assert(nibble < 16);
*first++ = "0123456789abcdef"[nibble];
++written_hexits;
effective_mantissa &= ~(mantissa_t{0b1111} << nibble_offset);
}
- __glibcxx_assert(nibble_offset >= 0);
- __glibcxx_assert(written_hexits <= effective_precision);
- // Since the mantissa is now empty, every hexit hereafter must be '0'.
- if (int remaining_hexits = effective_precision - written_hexits)
{
memset(first, '0', remaining_hexits);
first += remaining_hexits;
}
}
- // Finally, write the exponent.
- *first++ = 'p';
- if (written_exponent >= 0)
*first++ = '+';
- const to_chars_result result = to_chars(first, last, written_exponent);
- __glibcxx_assert(result.ec == errc{}
&& result.ptr == saved_first + expected_output_length);
- return result;
- }
+template<typename T>
- static to_chars_result
- __floating_to_chars_shortest(char* first, char* const last, const T value,
chars_format fmt)
- {
- if (fmt == chars_format::hex)
return __floating_to_chars_hex(first, last, value, nullopt);
- __glibcxx_assert(fmt == chars_format::fixed
|| fmt == chars_format::scientific
</cut>
linaro-toolchain@lists.linaro.org