We exchange file timestamps with user space using psdev device
read/write operations with a fixed but architecture specific binary
layout.
On 32-bit systems, this uses a 'timespec' structure that is defined by
the C library to contain two 32-bit values for seconds and nanoseconds.
As we get ready for the year 2038 overflow of the 32-bit signed seconds,
the kernel now uses 64-bit timestamps internally, and user space will
do the same change by changing the 'timespec' definition in the future.
Unfortunately, this breaks the layout of the coda_vattr structure, so
we need to redefine that in terms of something that does not change.
I'm introducing a new 'struct vtimespec' structure here that keeps
the existing layout, and the same change has to be done in the coda
user space copy of linux/coda.h before anyone can use that on a 32-bit
architecture with 64-bit time_t.
An open question is what should happen to actual times past y2038,
as they are now truncated to the last valid date when sent to user
space, and interpreted as pre-1970 times when a timestamp with the
MSB set is read back into the kernel. Alternatively, we could
change the new timespec64_to_coda()/coda_to_timespec64() functions
to use a different interpretation and extend the available range
further to the future by disallowing past timestamps. This would
require more changes in the user space side though.
Signed-off-by: Arnd Bergmann <arnd(a)arndb.de>
---
Documentation/filesystems/coda.txt | 11 ++++++---
fs/coda/coda_linux.c | 50 +++++++++++++++++++++++++++++---------
include/uapi/linux/coda.h | 20 ++++++++++++---
3 files changed, 62 insertions(+), 19 deletions(-)
diff --git a/Documentation/filesystems/coda.txt b/Documentation/filesystems/coda.txt
index 61311356025d..ea5969068895 100644
--- a/Documentation/filesystems/coda.txt
+++ b/Documentation/filesystems/coda.txt
@@ -481,7 +481,10 @@ kernel support.
-
+ struct vtimespec {
+ long tv_sec; /* seconds */
+ long tv_nsec; /* nanoseconds */
+ };
struct coda_vattr {
enum coda_vtype va_type; /* vnode type (for create) */
@@ -493,9 +496,9 @@ kernel support.
long va_fileid; /* file id */
u_quad_t va_size; /* file size in bytes */
long va_blocksize; /* blocksize preferred for i/o */
- struct timespec va_atime; /* time of last access */
- struct timespec va_mtime; /* time of last modification */
- struct timespec va_ctime; /* time file changed */
+ struct vtimespec va_atime; /* time of last access */
+ struct vtimespec va_mtime; /* time of last modification */
+ struct vtimespec va_ctime; /* time file changed */
u_long va_gen; /* generation number of file */
u_long va_flags; /* flags defined for file */
dev_t va_rdev; /* device special file represents */
diff --git a/fs/coda/coda_linux.c b/fs/coda/coda_linux.c
index f3d543dd9a98..8addcd166908 100644
--- a/fs/coda/coda_linux.c
+++ b/fs/coda/coda_linux.c
@@ -66,6 +66,32 @@ unsigned short coda_flags_to_cflags(unsigned short flags)
return coda_flags;
}
+static struct timespec64 coda_to_timespec64(struct vtimespec ts)
+{
+ /*
+ * We interpret incoming timestamps as 'signed' to match traditional
+ * usage and support pre-1970 timestamps, but this breaks in y2038
+ * on 32-bit machines.
+ */
+ struct timespec64 ts64 = {
+ .tv_sec = ts.tv_sec,
+ .tv_nsec = ts.tv_nsec,
+ };
+
+ return ts64;
+}
+
+static struct vtimespec timespec64_to_coda(struct timespec64 ts64)
+{
+ /* clamp the timestamps to the maximum range rather than wrapping */
+ struct vtimespec ts = {
+ .tv_sec = lower_32_bits(clamp_t(time64_t, ts64.tv_sec,
+ LONG_MIN, LONG_MAX)),
+ .tv_nsec = ts64.tv_nsec,
+ };
+
+ return ts;
+}
/* utility functions below */
void coda_vattr_to_iattr(struct inode *inode, struct coda_vattr *attr)
@@ -105,11 +131,11 @@ void coda_vattr_to_iattr(struct inode *inode, struct coda_vattr *attr)
if (attr->va_size != -1)
inode->i_blocks = (attr->va_size + 511) >> 9;
if (attr->va_atime.tv_sec != -1)
- inode->i_atime = timespec_to_timespec64(attr->va_atime);
+ inode->i_atime = coda_to_timespec64(attr->va_atime);
if (attr->va_mtime.tv_sec != -1)
- inode->i_mtime = timespec_to_timespec64(attr->va_mtime);
+ inode->i_mtime = coda_to_timespec64(attr->va_mtime);
if (attr->va_ctime.tv_sec != -1)
- inode->i_ctime = timespec_to_timespec64(attr->va_ctime);
+ inode->i_ctime = coda_to_timespec64(attr->va_ctime);
}
@@ -130,12 +156,12 @@ void coda_iattr_to_vattr(struct iattr *iattr, struct coda_vattr *vattr)
vattr->va_uid = (vuid_t) -1;
vattr->va_gid = (vgid_t) -1;
vattr->va_size = (off_t) -1;
- vattr->va_atime.tv_sec = (time_t) -1;
- vattr->va_atime.tv_nsec = (time_t) -1;
- vattr->va_mtime.tv_sec = (time_t) -1;
- vattr->va_mtime.tv_nsec = (time_t) -1;
- vattr->va_ctime.tv_sec = (time_t) -1;
- vattr->va_ctime.tv_nsec = (time_t) -1;
+ vattr->va_atime.tv_sec = (long) -1;
+ vattr->va_atime.tv_nsec = (long) -1;
+ vattr->va_mtime.tv_sec = (long) -1;
+ vattr->va_mtime.tv_nsec = (long) -1;
+ vattr->va_ctime.tv_sec = (long) -1;
+ vattr->va_ctime.tv_nsec = (long) -1;
vattr->va_type = C_VNON;
vattr->va_fileid = -1;
vattr->va_gen = -1;
@@ -175,13 +201,13 @@ void coda_iattr_to_vattr(struct iattr *iattr, struct coda_vattr *vattr)
vattr->va_size = iattr->ia_size;
}
if ( valid & ATTR_ATIME ) {
- vattr->va_atime = timespec64_to_timespec(iattr->ia_atime);
+ vattr->va_atime = timespec64_to_coda(iattr->ia_atime);
}
if ( valid & ATTR_MTIME ) {
- vattr->va_mtime = timespec64_to_timespec(iattr->ia_mtime);
+ vattr->va_mtime = timespec64_to_coda(iattr->ia_mtime);
}
if ( valid & ATTR_CTIME ) {
- vattr->va_ctime = timespec64_to_timespec(iattr->ia_ctime);
+ vattr->va_ctime = timespec64_to_coda(iattr->ia_ctime);
}
}
diff --git a/include/uapi/linux/coda.h b/include/uapi/linux/coda.h
index 695fade33c64..027a8eb04423 100644
--- a/include/uapi/linux/coda.h
+++ b/include/uapi/linux/coda.h
@@ -211,6 +211,20 @@ struct CodaFid {
*/
enum coda_vtype { C_VNON, C_VREG, C_VDIR, C_VBLK, C_VCHR, C_VLNK, C_VSOCK, C_VFIFO, C_VBAD };
+#ifdef __linux__
+/*
+ * This matches the traditional Linux 'timespec' structure binary layout,
+ * before using 64-bit time_t everywhere. Overflows in y2038 on 32-bit
+ * architectures.
+ */
+struct vtimespec {
+ long tv_sec; /* seconds */
+ long tv_nsec; /* nanoseconds */
+};
+#else
+#define vtimespec timespec
+#endif
+
struct coda_vattr {
long va_type; /* vnode type (for create) */
u_short va_mode; /* files access mode and type */
@@ -220,9 +234,9 @@ struct coda_vattr {
long va_fileid; /* file id */
u_quad_t va_size; /* file size in bytes */
long va_blocksize; /* blocksize preferred for i/o */
- struct timespec va_atime; /* time of last access */
- struct timespec va_mtime; /* time of last modification */
- struct timespec va_ctime; /* time file changed */
+ struct vtimespec va_atime; /* time of last access */
+ struct vtimespec va_mtime; /* time of last modification */
+ struct vtimespec va_ctime; /* time file changed */
u_long va_gen; /* generation number of file */
u_long va_flags; /* flags defined for file */
cdev_t va_rdev; /* device special file represents */
--
2.9.0
The file creation time in the inode uses time_t which is defined differently
on 32-bit and 64-bit architectures and deprecated. The representation in
the inode uses an unsigned 32-bit number, but this gets wrapped around
after year 2038 when assigned to a time_t.
This changes the type to time64_t, so we can support the full range of
timestamps between 1970 and 2106 on 32-bit systems like we do on 64-bit
systems already, and matching what we do for the atime/ctime/mtime stamps
since the introduction of 64-bit timestamps in VFS.
Note: the otime stamp is not actually used anywhere at the moment in
the kernel, it is just set when writing a file, so none of this really
makes a difference unless we implement setting the btime field in the
getattr() callback.
Signed-off-by: Arnd Bergmann <arnd(a)arndb.de>
---
fs/jfs/jfs_incore.h | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/fs/jfs/jfs_incore.h b/fs/jfs/jfs_incore.h
index 1f26d1910409..d5c46f86b2ef 100644
--- a/fs/jfs/jfs_incore.h
+++ b/fs/jfs/jfs_incore.h
@@ -43,7 +43,7 @@ struct jfs_inode_info {
pxd_t ixpxd; /* inode extent descriptor */
dxd_t acl; /* dxd describing acl */
dxd_t ea; /* dxd describing ea */
- time_t otime; /* time created */
+ time64_t otime; /* time created */
uint next_index; /* next available directory entry index */
int acltype; /* Type of ACL */
short btorder; /* access order */
--
2.9.0
Now that the VFS has been converted from timespec to timespec64
timestamps, only the conversion to/from ntfs timestamps uses 32-bit
seconds.
This changes that last missing piece to get the ntfs implementation
y2038 safe on 32-bit architectures.
Signed-off-by: Arnd Bergmann <arnd(a)arndb.de>
---
fs/ntfs/inode.c | 12 ++++++------
fs/ntfs/time.h | 27 +++++++++++++++------------
2 files changed, 21 insertions(+), 18 deletions(-)
diff --git a/fs/ntfs/inode.c b/fs/ntfs/inode.c
index decaf75d1cd5..bd3221cbdd95 100644
--- a/fs/ntfs/inode.c
+++ b/fs/ntfs/inode.c
@@ -667,18 +667,18 @@ static int ntfs_read_locked_inode(struct inode *vi)
* mtime is the last change of the data within the file. Not changed
* when only metadata is changed, e.g. a rename doesn't affect mtime.
*/
- vi->i_mtime = timespec_to_timespec64(ntfs2utc(si->last_data_change_time));
+ vi->i_mtime = ntfs2utc(si->last_data_change_time);
/*
* ctime is the last change of the metadata of the file. This obviously
* always changes, when mtime is changed. ctime can be changed on its
* own, mtime is then not changed, e.g. when a file is renamed.
*/
- vi->i_ctime = timespec_to_timespec64(ntfs2utc(si->last_mft_change_time));
+ vi->i_ctime = ntfs2utc(si->last_mft_change_time);
/*
* Last access to the data within the file. Not changed during a rename
* for example but changed whenever the file is written to.
*/
- vi->i_atime = timespec_to_timespec64(ntfs2utc(si->last_access_time));
+ vi->i_atime = ntfs2utc(si->last_access_time);
/* Find the attribute list attribute if present. */
ntfs_attr_reinit_search_ctx(ctx);
@@ -2997,7 +2997,7 @@ int __ntfs_write_inode(struct inode *vi, int sync)
si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
/* Update the access times if they have changed. */
- nt = utc2ntfs(timespec64_to_timespec(vi->i_mtime));
+ nt = utc2ntfs(vi->i_mtime);
if (si->last_data_change_time != nt) {
ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
"new = 0x%llx", vi->i_ino, (long long)
@@ -3006,7 +3006,7 @@ int __ntfs_write_inode(struct inode *vi, int sync)
si->last_data_change_time = nt;
modified = true;
}
- nt = utc2ntfs(timespec64_to_timespec(vi->i_ctime));
+ nt = utc2ntfs(vi->i_ctime);
if (si->last_mft_change_time != nt) {
ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
"new = 0x%llx", vi->i_ino, (long long)
@@ -3015,7 +3015,7 @@ int __ntfs_write_inode(struct inode *vi, int sync)
si->last_mft_change_time = nt;
modified = true;
}
- nt = utc2ntfs(timespec64_to_timespec(vi->i_atime));
+ nt = utc2ntfs(vi->i_atime);
if (si->last_access_time != nt) {
ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
"new = 0x%llx", vi->i_ino,
diff --git a/fs/ntfs/time.h b/fs/ntfs/time.h
index 01233989d5d1..24cd719f1fd2 100644
--- a/fs/ntfs/time.h
+++ b/fs/ntfs/time.h
@@ -36,16 +36,16 @@
* Convert the Linux UTC time @ts to its corresponding NTFS time and return
* that in little endian format.
*
- * Linux stores time in a struct timespec consisting of a time_t (long at
- * present) tv_sec and a long tv_nsec where tv_sec is the number of 1-second
- * intervals since 1st January 1970, 00:00:00 UTC and tv_nsec is the number of
- * 1-nano-second intervals since the value of tv_sec.
+ * Linux stores time in a struct timespec64 consisting of a time64_t tv_sec
+ * and a long tv_nsec where tv_sec is the number of 1-second intervals since
+ * 1st January 1970, 00:00:00 UTC and tv_nsec is the number of 1-nano-second
+ * intervals since the value of tv_sec.
*
* NTFS uses Microsoft's standard time format which is stored in a s64 and is
* measured as the number of 100-nano-second intervals since 1st January 1601,
* 00:00:00 UTC.
*/
-static inline sle64 utc2ntfs(const struct timespec ts)
+static inline sle64 utc2ntfs(const struct timespec64 ts)
{
/*
* Convert the seconds to 100ns intervals, add the nano-seconds
@@ -63,7 +63,10 @@ static inline sle64 utc2ntfs(const struct timespec ts)
*/
static inline sle64 get_current_ntfs_time(void)
{
- return utc2ntfs(current_kernel_time());
+ struct timespec64 ts;
+
+ ktime_get_coarse_real_ts64(&ts);
+ return utc2ntfs(ts);
}
/**
@@ -73,18 +76,18 @@ static inline sle64 get_current_ntfs_time(void)
* Convert the little endian NTFS time @time to its corresponding Linux UTC
* time and return that in cpu format.
*
- * Linux stores time in a struct timespec consisting of a time_t (long at
- * present) tv_sec and a long tv_nsec where tv_sec is the number of 1-second
- * intervals since 1st January 1970, 00:00:00 UTC and tv_nsec is the number of
- * 1-nano-second intervals since the value of tv_sec.
+ * Linux stores time in a struct timespec64 consisting of a time64_t tv_sec
+ * and a long tv_nsec where tv_sec is the number of 1-second intervals since
+ * 1st January 1970, 00:00:00 UTC and tv_nsec is the number of 1-nano-second
+ * intervals since the value of tv_sec.
*
* NTFS uses Microsoft's standard time format which is stored in a s64 and is
* measured as the number of 100 nano-second intervals since 1st January 1601,
* 00:00:00 UTC.
*/
-static inline struct timespec ntfs2utc(const sle64 time)
+static inline struct timespec64 ntfs2utc(const sle64 time)
{
- struct timespec ts;
+ struct timespec64 ts;
/* Subtract the NTFS time offset. */
u64 t = (u64)(sle64_to_cpu(time) - NTFS_TIME_OFFSET);
--
2.9.0
As Mathieu pointed out, my conversion to time64_t was incorrect and resulted
in negative times to be read from the RTC. The problem is that during the
conversion from a byte array to a time64_t, the 'unsigned char' variable
holding the top byte gets turned into a negative signed 32-bit integer
before being assigned to the 64-bit variable for any times after 1972.
This changes the logic to cast to an unsigned 32-bit number first for
the Macintosh time and then convert that to the Unix time, which then gives
us a time in the documented 1904..2040 year range. I decided not to use
the longer 1970..2106 range that other drivers use, for consistency with
the literal interpretation of the register, but that could be easily
changed if we decide we want to support any Mac after 2040.
Just to be on the safe side, I'm also adding a WARN_ON that will trigger
if either the year 2040 has come and is observed by this driver, or we
run into an RTC that got set back to a pre-1970 date for some reason
(the two are indistinguishable).
The same code exists in arch/m68k/ and is patched in an identical way now
in a separate patch.
Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock")
Reported-by: Mathieu Malaterre <malat(a)debian.org>
Signed-off-by: Arnd Bergmann <arnd(a)arndb.de>
---
arch/powerpc/platforms/powermac/time.c | 21 ++++++++++++++++-----
1 file changed, 16 insertions(+), 5 deletions(-)
diff --git a/arch/powerpc/platforms/powermac/time.c b/arch/powerpc/platforms/powermac/time.c
index 7c968e46736f..173a80630169 100644
--- a/arch/powerpc/platforms/powermac/time.c
+++ b/arch/powerpc/platforms/powermac/time.c
@@ -42,7 +42,11 @@
#define DBG(x...)
#endif
-/* Apparently the RTC stores seconds since 1 Jan 1904 */
+/*
+ * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
+ * times wrap in 2040. If we need to handle later times, the read_time functions
+ * need to be changed to interpret wrapped times as post-2040.
+ */
#define RTC_OFFSET 2082844800
/*
@@ -97,8 +101,11 @@ static time64_t cuda_get_time(void)
if (req.reply_len != 7)
printk(KERN_ERR "cuda_get_time: got %d byte reply\n",
req.reply_len);
- now = (req.reply[3] << 24) + (req.reply[4] << 16)
- + (req.reply[5] << 8) + req.reply[6];
+ now = (u32)((req.reply[3] << 24) + (req.reply[4] << 16) +
+ (req.reply[5] << 8) + req.reply[6]);
+ /* it's either after year 2040, or the RTC has gone backwards */
+ WARN_ON(now < RTC_OFFSET);
+
return now - RTC_OFFSET;
}
@@ -140,8 +147,12 @@ static time64_t pmu_get_time(void)
if (req.reply_len != 4)
printk(KERN_ERR "pmu_get_time: got %d byte reply from PMU\n",
req.reply_len);
- now = (req.reply[0] << 24) + (req.reply[1] << 16)
- + (req.reply[2] << 8) + req.reply[3];
+ now = (u32)((req.reply[0] << 24) + (req.reply[1] << 16) +
+ (req.reply[2] << 8) + req.reply[3]);
+
+ /* it's either after year 2040, or the RTC has gone backwards */
+ WARN_ON(now < RTC_OFFSET);
+
return now - RTC_OFFSET;
}
--
2.9.0
The ohci driver uses the get_seconds() function to implement the 32-bit
CSR_BUS_TIME register. This was added in 2010 commit a48777e03ad5
("firewire: add CSR BUS_TIME support").
As get_seconds() returns a 32-bit value (on 32-bit architectures), it
seems like a good fit for that register, but it is also deprecated because
of the y2038/y2106 overflow problem, and should be replaced throughout
the kernel with either ktime_get_real_seconds() or ktime_get_seconds().
I'm using the latter here, which uses monotonic time. This has the
advantage of behaving better during concurrent settimeofday() updates
or leap second adjustments and won't overflow a 32-bit integer, but
the downside of using CLOCK_MONOTONIC instead of CLOCK_REALTIME is
that the observed values are not related to external clocks.
If we instead need UTC but can live with clock jumps or overflows,
then we should use ktime_get_real_seconds() instead, retaining the
existing behavior.
Signed-off-by: Arnd Bergmann <arnd(a)arndb.de>
---
drivers/firewire/ohci.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/drivers/firewire/ohci.c b/drivers/firewire/ohci.c
index 45c048751f3b..5125841ea338 100644
--- a/drivers/firewire/ohci.c
+++ b/drivers/firewire/ohci.c
@@ -1765,7 +1765,7 @@ static u32 update_bus_time(struct fw_ohci *ohci)
if (unlikely(!ohci->bus_time_running)) {
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
- ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
+ ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
(cycle_time_seconds & 0x40);
ohci->bus_time_running = true;
}
--
2.9.0