Backport summary ---------------- 679c782de14b ("bpf/verifier: per-register parent pointers") * Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation"). * Context adjustments because of the code added by post-4.19 commit: f92a819b4cbef ("bpf: prevent out of bounds speculation on pointer arithmetic").
0bae2d4d62d5 ("bpf: correct slot_type marking logic to allow more stack slot sharing") * Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation"). * Minor context adjustement in selftest.
2011fccfb61b ("bpf: Support variable offset stack access from helpers") * Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation"). * 4.19 does not have the reg_state(env, regno) helper defined, so replace the call with "cur_regs(env) + regno".
f2bcd05ec7b8 ("bpf: Reject indirect var_off stack access in raw mode") * Follow-up fix for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers"). * Clean cherry-pick.
088ec26d9c2d ("bpf: Reject indirect var_off stack access in unpriv") * Follow-up fix for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers"). * Drop comment in retrieve_ptr_limit(), as it was made obsolete by post-4.19 commit 45bfdd767e235 ("bpf: Tighten speculative pointer arithmetic mask").
107c26a70ca8 ("bpf: Sanity check max value for var_off stack access") * Follow-up fix for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers"). * Clean cherry-pick.
8ff80e96e3cc ("selftests/bpf: Test variable offset stack access") * Selftest follow-up for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers"). * Post-4.19, the verifier tests were split into different files, in 4.19 they are still all in test_verifier.c, so apply the changes manually.
f7cf25b2026d ("bpf: track spill/fill of constants") * Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation"). * Drop verbose_linfo() calls, as the function is not implemented in 4.19. * Adjust mark_reg_read() calls to match the prototype in 4.19. (mark_reg_read() was changed to take 4 parameters in post-4.19 commit 5327ed3d44b75("bpf: verifier: mark verified-insn with sub-register zext flag"), but backporting it is out of scope for this patchseries).
fc559a70d57c ("selftests/bpf: fix tests due to const spill/fill") * Selftest follow-up for f7cf25b2026d ("bpf: track spill/fill of constants"). * Post-4.19, the verifier tests were split into different files, in 4.19 they are still all in test_verifier.c, so apply the changes manually.
f5e81d111750 ("bpf: Introduce BPF nospec instruction for mitigating Spectre v4") * Contextual adjustments. * Drop arch/powerpc/net/bpf_jit_comp32.c changes, as the file is not present in 4.19 * Drop riscv changes, as arch/riscv/net/bpf_jit_comp.c file is not present in 4.19
2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation") * Contextual adjustments. * Apply check_stack_write_fixed_off() changes in check_stack_write(). * Replace env->bypass_spec_v4 -> env->allow_ptr_leaks.
c9e73e3d2b1e ("bpf: verifier: Allocate idmap scratch in verifier env") e042aa532c84 ("bpf: Fix pointer arithmetic mask tightening under state") * Contextual adjustments.
With this patchseries all bpf verifier selftests pass (tested in qemu for x86_64): root@intel-x86-64:~# ./test_verifier ... #663/p pass modified ctx pointer to helper, 3 OK #664/p mov64 src == dst OK #665/p mov64 src != dst OK #666/u calls: ctx read at start of subprog OK #666/p calls: ctx read at start of subprog OK Summary: 932 PASSED, 0 SKIPPED, 0 FAILED
Alexei Starovoitov (2): bpf: track spill/fill of constants selftests/bpf: fix tests due to const spill/fill
Andrey Ignatov (5): bpf: Support variable offset stack access from helpers bpf: Reject indirect var_off stack access in raw mode bpf: Reject indirect var_off stack access in unpriv mode bpf: Sanity check max value for var_off stack access selftests/bpf: Test variable offset stack access
Daniel Borkmann (3): bpf: Introduce BPF nospec instruction for mitigating Spectre v4 bpf: Fix leakage due to insufficient speculative store bypass mitigation bpf: Fix pointer arithmetic mask tightening under state pruning
Edward Cree (1): bpf/verifier: per-register parent pointers
Jiong Wang (1): bpf: correct slot_type marking logic to allow more stack slot sharing
Lorenz Bauer (1): bpf: verifier: Allocate idmap scratch in verifier env
arch/arm/net/bpf_jit_32.c | 3 + arch/arm64/net/bpf_jit_comp.c | 13 + arch/mips/net/ebpf_jit.c | 3 + arch/powerpc/net/bpf_jit_comp64.c | 6 + arch/s390/net/bpf_jit_comp.c | 5 + arch/sparc/net/bpf_jit_comp_64.c | 3 + arch/x86/net/bpf_jit_comp.c | 7 + arch/x86/net/bpf_jit_comp32.c | 6 + include/linux/bpf_verifier.h | 19 +- include/linux/filter.h | 15 + kernel/bpf/core.c | 18 +- kernel/bpf/disasm.c | 16 +- kernel/bpf/verifier.c | 498 ++++++++++---------- tools/testing/selftests/bpf/test_verifier.c | 144 +++++- 14 files changed, 468 insertions(+), 288 deletions(-)
From: Edward Cree ecree@solarflare.com
commit 679c782de14bd48c19dd74cd1af20a2bc05dd936 upstream.
By giving each register its own liveness chain, we elide the skip_callee() logic. Instead, each register's parent is the state it inherits from; both check_func_call() and prepare_func_exit() automatically connect reg states to the correct chain since when they copy the reg state across (r1-r5 into the callee as args, and r0 out as the return value) they also copy the parent pointer.
Signed-off-by: Edward Cree ecree@solarflare.com Signed-off-by: Alexei Starovoitov ast@kernel.org [OP: adjusted context for 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- include/linux/bpf_verifier.h | 8 +- kernel/bpf/verifier.c | 183 +++++++++-------------------------- 2 files changed, 47 insertions(+), 144 deletions(-)
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index 1c8517320ea6..daab0960c054 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -41,6 +41,7 @@ enum bpf_reg_liveness { };
struct bpf_reg_state { + /* Ordering of fields matters. See states_equal() */ enum bpf_reg_type type; union { /* valid when type == PTR_TO_PACKET */ @@ -62,7 +63,6 @@ struct bpf_reg_state { * came from, when one is tested for != NULL. */ u32 id; - /* Ordering of fields matters. See states_equal() */ /* For scalar types (SCALAR_VALUE), this represents our knowledge of * the actual value. * For pointer types, this represents the variable part of the offset @@ -79,15 +79,15 @@ struct bpf_reg_state { s64 smax_value; /* maximum possible (s64)value */ u64 umin_value; /* minimum possible (u64)value */ u64 umax_value; /* maximum possible (u64)value */ + /* parentage chain for liveness checking */ + struct bpf_reg_state *parent; /* Inside the callee two registers can be both PTR_TO_STACK like * R1=fp-8 and R2=fp-8, but one of them points to this function stack * while another to the caller's stack. To differentiate them 'frameno' * is used which is an index in bpf_verifier_state->frame[] array * pointing to bpf_func_state. - * This field must be second to last, for states_equal() reasons. */ u32 frameno; - /* This field must be last, for states_equal() reasons. */ enum bpf_reg_liveness live; };
@@ -110,7 +110,6 @@ struct bpf_stack_state { */ struct bpf_func_state { struct bpf_reg_state regs[MAX_BPF_REG]; - struct bpf_verifier_state *parent; /* index of call instruction that called into this func */ int callsite; /* stack frame number of this function state from pov of @@ -132,7 +131,6 @@ struct bpf_func_state { struct bpf_verifier_state { /* call stack tracking */ struct bpf_func_state *frame[MAX_CALL_FRAMES]; - struct bpf_verifier_state *parent; u32 curframe; bool speculative; }; diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index abdc9eca463c..a5259ff30073 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -380,9 +380,9 @@ static int copy_stack_state(struct bpf_func_state *dst, /* do_check() starts with zero-sized stack in struct bpf_verifier_state to * make it consume minimal amount of memory. check_stack_write() access from * the program calls into realloc_func_state() to grow the stack size. - * Note there is a non-zero 'parent' pointer inside bpf_verifier_state - * which this function copies over. It points to previous bpf_verifier_state - * which is never reallocated + * Note there is a non-zero parent pointer inside each reg of bpf_verifier_state + * which this function copies over. It points to corresponding reg in previous + * bpf_verifier_state which is never reallocated */ static int realloc_func_state(struct bpf_func_state *state, int size, bool copy_old) @@ -467,7 +467,6 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, } dst_state->speculative = src->speculative; dst_state->curframe = src->curframe; - dst_state->parent = src->parent; for (i = 0; i <= src->curframe; i++) { dst = dst_state->frame[i]; if (!dst) { @@ -739,6 +738,7 @@ static void init_reg_state(struct bpf_verifier_env *env, for (i = 0; i < MAX_BPF_REG; i++) { mark_reg_not_init(env, regs, i); regs[i].live = REG_LIVE_NONE; + regs[i].parent = NULL; }
/* frame pointer */ @@ -883,74 +883,21 @@ static int check_subprogs(struct bpf_verifier_env *env) return 0; }
-static -struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, - const struct bpf_verifier_state *state, - struct bpf_verifier_state *parent, - u32 regno) -{ - struct bpf_verifier_state *tmp = NULL; - - /* 'parent' could be a state of caller and - * 'state' could be a state of callee. In such case - * parent->curframe < state->curframe - * and it's ok for r1 - r5 registers - * - * 'parent' could be a callee's state after it bpf_exit-ed. - * In such case parent->curframe > state->curframe - * and it's ok for r0 only - */ - if (parent->curframe == state->curframe || - (parent->curframe < state->curframe && - regno >= BPF_REG_1 && regno <= BPF_REG_5) || - (parent->curframe > state->curframe && - regno == BPF_REG_0)) - return parent; - - if (parent->curframe > state->curframe && - regno >= BPF_REG_6) { - /* for callee saved regs we have to skip the whole chain - * of states that belong to callee and mark as LIVE_READ - * the registers before the call - */ - tmp = parent; - while (tmp && tmp->curframe != state->curframe) { - tmp = tmp->parent; - } - if (!tmp) - goto bug; - parent = tmp; - } else { - goto bug; - } - return parent; -bug: - verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); - verbose(env, "regno %d parent frame %d current frame %d\n", - regno, parent->curframe, state->curframe); - return NULL; -} - +/* Parentage chain of this register (or stack slot) should take care of all + * issues like callee-saved registers, stack slot allocation time, etc. + */ static int mark_reg_read(struct bpf_verifier_env *env, - const struct bpf_verifier_state *state, - struct bpf_verifier_state *parent, - u32 regno) + const struct bpf_reg_state *state, + struct bpf_reg_state *parent) { bool writes = parent == state->parent; /* Observe write marks */
- if (regno == BPF_REG_FP) - /* We don't need to worry about FP liveness because it's read-only */ - return 0; - while (parent) { /* if read wasn't screened by an earlier write ... */ - if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) + if (writes && state->live & REG_LIVE_WRITTEN) break; - parent = skip_callee(env, state, parent, regno); - if (!parent) - return -EFAULT; /* ... then we depend on parent's value */ - parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; + parent->live |= REG_LIVE_READ; state = parent; parent = state->parent; writes = true; @@ -976,7 +923,10 @@ static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, verbose(env, "R%d !read_ok\n", regno); return -EACCES; } - return mark_reg_read(env, vstate, vstate->parent, regno); + /* We don't need to worry about FP liveness because it's read-only */ + if (regno != BPF_REG_FP) + return mark_reg_read(env, ®s[regno], + regs[regno].parent); } else { /* check whether register used as dest operand can be written to */ if (regno == BPF_REG_FP) { @@ -1087,8 +1037,8 @@ static int check_stack_write(struct bpf_verifier_env *env, } else { u8 type = STACK_MISC;
- /* regular write of data into stack */ - state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; + /* regular write of data into stack destroys any spilled ptr */ + state->stack[spi].spilled_ptr.type = NOT_INIT;
/* only mark the slot as written if all 8 bytes were written * otherwise read propagation may incorrectly stop too soon @@ -1113,61 +1063,6 @@ static int check_stack_write(struct bpf_verifier_env *env, return 0; }
-/* registers of every function are unique and mark_reg_read() propagates - * the liveness in the following cases: - * - from callee into caller for R1 - R5 that were used as arguments - * - from caller into callee for R0 that used as result of the call - * - from caller to the same caller skipping states of the callee for R6 - R9, - * since R6 - R9 are callee saved by implicit function prologue and - * caller's R6 != callee's R6, so when we propagate liveness up to - * parent states we need to skip callee states for R6 - R9. - * - * stack slot marking is different, since stacks of caller and callee are - * accessible in both (since caller can pass a pointer to caller's stack to - * callee which can pass it to another function), hence mark_stack_slot_read() - * has to propagate the stack liveness to all parent states at given frame number. - * Consider code: - * f1() { - * ptr = fp - 8; - * *ptr = ctx; - * call f2 { - * .. = *ptr; - * } - * .. = *ptr; - * } - * First *ptr is reading from f1's stack and mark_stack_slot_read() has - * to mark liveness at the f1's frame and not f2's frame. - * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has - * to propagate liveness to f2 states at f1's frame level and further into - * f1 states at f1's frame level until write into that stack slot - */ -static void mark_stack_slot_read(struct bpf_verifier_env *env, - const struct bpf_verifier_state *state, - struct bpf_verifier_state *parent, - int slot, int frameno) -{ - bool writes = parent == state->parent; /* Observe write marks */ - - while (parent) { - if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) - /* since LIVE_WRITTEN mark is only done for full 8-byte - * write the read marks are conservative and parent - * state may not even have the stack allocated. In such case - * end the propagation, since the loop reached beginning - * of the function - */ - break; - /* if read wasn't screened by an earlier write ... */ - if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) - break; - /* ... then we depend on parent's value */ - parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; - state = parent; - parent = state->parent; - writes = true; - } -} - static int check_stack_read(struct bpf_verifier_env *env, struct bpf_func_state *reg_state /* func where register points to */, int off, int size, int value_regno) @@ -1205,8 +1100,8 @@ static int check_stack_read(struct bpf_verifier_env *env, */ state->regs[value_regno].live |= REG_LIVE_WRITTEN; } - mark_stack_slot_read(env, vstate, vstate->parent, spi, - reg_state->frameno); + mark_reg_read(env, ®_state->stack[spi].spilled_ptr, + reg_state->stack[spi].spilled_ptr.parent); return 0; } else { int zeros = 0; @@ -1222,8 +1117,8 @@ static int check_stack_read(struct bpf_verifier_env *env, off, i, size); return -EACCES; } - mark_stack_slot_read(env, vstate, vstate->parent, spi, - reg_state->frameno); + mark_reg_read(env, ®_state->stack[spi].spilled_ptr, + reg_state->stack[spi].spilled_ptr.parent); if (value_regno >= 0) { if (zeros == size) { /* any size read into register is zero extended, @@ -1927,8 +1822,8 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, /* reading any byte out of 8-byte 'spill_slot' will cause * the whole slot to be marked as 'read' */ - mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, - spi, state->frameno); + mark_reg_read(env, &state->stack[spi].spilled_ptr, + state->stack[spi].spilled_ptr.parent); } return update_stack_depth(env, state, off); } @@ -2384,11 +2279,13 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, state->curframe + 1 /* frameno within this callchain */, subprog /* subprog number within this prog */);
- /* copy r1 - r5 args that callee can access */ + /* copy r1 - r5 args that callee can access. The copy includes parent + * pointers, which connects us up to the liveness chain + */ for (i = BPF_REG_1; i <= BPF_REG_5; i++) callee->regs[i] = caller->regs[i];
- /* after the call regsiters r0 - r5 were scratched */ + /* after the call registers r0 - r5 were scratched */ for (i = 0; i < CALLER_SAVED_REGS; i++) { mark_reg_not_init(env, caller->regs, caller_saved[i]); check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); @@ -4844,7 +4741,7 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, /* explored state didn't use this */ return true;
- equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; + equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
if (rold->type == PTR_TO_STACK) /* two stack pointers are equal only if they're pointing to @@ -5083,7 +4980,7 @@ static bool states_equal(struct bpf_verifier_env *env, * equivalent state (jump target or such) we didn't arrive by the straight-line * code, so read marks in the state must propagate to the parent regardless * of the state's write marks. That's what 'parent == state->parent' comparison - * in mark_reg_read() and mark_stack_slot_read() is for. + * in mark_reg_read() is for. */ static int propagate_liveness(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, @@ -5104,7 +5001,8 @@ static int propagate_liveness(struct bpf_verifier_env *env, if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) continue; if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { - err = mark_reg_read(env, vstate, vparent, i); + err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], + &vparent->frame[vstate->curframe]->regs[i]); if (err) return err; } @@ -5119,7 +5017,8 @@ static int propagate_liveness(struct bpf_verifier_env *env, if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) continue; if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) - mark_stack_slot_read(env, vstate, vparent, i, frame); + mark_reg_read(env, &state->stack[i].spilled_ptr, + &parent->stack[i].spilled_ptr); } } return err; @@ -5129,7 +5028,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) { struct bpf_verifier_state_list *new_sl; struct bpf_verifier_state_list *sl; - struct bpf_verifier_state *cur = env->cur_state; + struct bpf_verifier_state *cur = env->cur_state, *new; int i, j, err, states_cnt = 0;
sl = env->explored_states[insn_idx]; @@ -5175,16 +5074,18 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) return -ENOMEM;
/* add new state to the head of linked list */ - err = copy_verifier_state(&new_sl->state, cur); + new = &new_sl->state; + err = copy_verifier_state(new, cur); if (err) { - free_verifier_state(&new_sl->state, false); + free_verifier_state(new, false); kfree(new_sl); return err; } new_sl->next = env->explored_states[insn_idx]; env->explored_states[insn_idx] = new_sl; /* connect new state to parentage chain */ - cur->parent = &new_sl->state; + for (i = 0; i < BPF_REG_FP; i++) + cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; /* clear write marks in current state: the writes we did are not writes * our child did, so they don't screen off its reads from us. * (There are no read marks in current state, because reads always mark @@ -5197,9 +5098,13 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) /* all stack frames are accessible from callee, clear them all */ for (j = 0; j <= cur->curframe; j++) { struct bpf_func_state *frame = cur->frame[j]; + struct bpf_func_state *newframe = new->frame[j];
- for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) + for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; + frame->stack[i].spilled_ptr.parent = + &newframe->stack[i].spilled_ptr; + } } return 0; }
From: Jiong Wang jiong.wang@netronome.com
commit 0bae2d4d62d523f06ff1a8e88ce38b45400acd28 upstream.
Verifier is supposed to support sharing stack slot allocated to ptr with SCALAR_VALUE for privileged program. However this doesn't happen for some cases.
The reason is verifier is not clearing slot_type STACK_SPILL for all bytes, it only clears part of them, while verifier is using:
slot_type[0] == STACK_SPILL
as a convention to check one slot is ptr type.
So, the consequence of partial clearing slot_type is verifier could treat a partially overridden ptr slot, which should now be a SCALAR_VALUE slot, still as ptr slot, and rejects some valid programs.
Before this patch, test_xdp_noinline.o under bpf selftests, bpf_lxc.o and bpf_netdev.o under Cilium bpf repo, when built with -mattr=+alu32 are rejected due to this issue. After this patch, they all accepted.
There is no processed insn number change before and after this patch on Cilium bpf programs.
Reviewed-by: Jakub Kicinski jakub.kicinski@netronome.com Signed-off-by: Jiong Wang jiong.wang@netronome.com Reviewed-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Alexei Starovoitov ast@kernel.org [OP: adjusted context for 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- kernel/bpf/verifier.c | 5 +++ tools/testing/selftests/bpf/test_verifier.c | 34 +++++++++++++++++++-- 2 files changed, 37 insertions(+), 2 deletions(-)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index a5259ff30073..b6f008dcb30c 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1039,6 +1039,10 @@ static int check_stack_write(struct bpf_verifier_env *env,
/* regular write of data into stack destroys any spilled ptr */ state->stack[spi].spilled_ptr.type = NOT_INIT; + /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ + if (state->stack[spi].slot_type[0] == STACK_SPILL) + for (i = 0; i < BPF_REG_SIZE; i++) + state->stack[spi].slot_type[i] = STACK_MISC;
/* only mark the slot as written if all 8 bytes were written * otherwise read propagation may incorrectly stop too soon @@ -1056,6 +1060,7 @@ static int check_stack_write(struct bpf_verifier_env *env, register_is_null(&cur->regs[value_regno])) type = STACK_ZERO;
+ /* Mark slots affected by this stack write. */ for (i = 0; i < size; i++) state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; diff --git a/tools/testing/selftests/bpf/test_verifier.c b/tools/testing/selftests/bpf/test_verifier.c index c7d17781dbfe..6b9ed915c6b0 100644 --- a/tools/testing/selftests/bpf/test_verifier.c +++ b/tools/testing/selftests/bpf/test_verifier.c @@ -956,15 +956,45 @@ static struct bpf_test tests[] = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), /* mess up with R1 pointer on stack */ BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23), - /* fill back into R0 should fail */ + /* fill back into R0 is fine for priv. + * R0 now becomes SCALAR_VALUE. + */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), + /* Load from R0 should fail. */ + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 8), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", - .errstr = "corrupted spill", + .errstr = "R0 invalid mem access 'inv", .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, + { + "check corrupted spill/fill, LSB", + .insns = { + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), + BPF_ST_MEM(BPF_H, BPF_REG_10, -8, 0xcafe), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), + BPF_EXIT_INSN(), + }, + .errstr_unpriv = "attempt to corrupt spilled", + .result_unpriv = REJECT, + .result = ACCEPT, + .retval = POINTER_VALUE, + }, + { + "check corrupted spill/fill, MSB", + .insns = { + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), + BPF_ST_MEM(BPF_W, BPF_REG_10, -4, 0x12345678), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), + BPF_EXIT_INSN(), + }, + .errstr_unpriv = "attempt to corrupt spilled", + .result_unpriv = REJECT, + .result = ACCEPT, + .retval = POINTER_VALUE, + }, { "invalid src register in STX", .insns = {
From: Andrey Ignatov rdna@fb.com
commit 2011fccfb61bbd1d7c8864b2b3ed7012342e9ba3 upstream.
Currently there is a difference in how verifier checks memory access for helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to variable part of offset.
check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable offsets just fine, so that BPF program can call a helper like this:
some_helper(map_value_ptr + off, size);
, where offset is unknown at load time, but is checked by program to be in a safe rage (off >= 0 && off + size < map_value_size).
But it's not the case for check_stack_boundary, that is used for PTR_TO_STACK, and same code with pointer to stack is rejected by verifier:
some_helper(stack_value_ptr + off, size);
For example: 0: (7a) *(u64 *)(r10 -16) = 0 1: (7a) *(u64 *)(r10 -8) = 0 2: (61) r2 = *(u32 *)(r1 +0) 3: (57) r2 &= 4 4: (17) r2 -= 16 5: (0f) r2 += r10 6: (18) r1 = 0xffff888111343a80 8: (85) call bpf_map_lookup_elem#1 invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4)
Add support for variable offset access to check_stack_boundary so that if offset is checked by program to be in a safe range it's accepted by verifier.
Signed-off-by: Andrey Ignatov rdna@fb.com Signed-off-by: Alexei Starovoitov ast@kernel.org [OP: replace reg_state(env, regno) helper with "cur_regs(env) + regno"] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- kernel/bpf/verifier.c | 75 +++++++++++++++++++++++++++++++------------ 1 file changed, 54 insertions(+), 21 deletions(-)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index b6f008dcb30c..47395fa40219 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1755,6 +1755,29 @@ static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_ins BPF_SIZE(insn->code), BPF_WRITE, -1, true); }
+static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, + int off, int access_size, + bool zero_size_allowed) +{ + struct bpf_reg_state *reg = cur_regs(env) + regno; + + if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || + access_size < 0 || (access_size == 0 && !zero_size_allowed)) { + if (tnum_is_const(reg->var_off)) { + verbose(env, "invalid stack type R%d off=%d access_size=%d\n", + regno, off, access_size); + } else { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", + regno, tn_buf, access_size); + } + return -EACCES; + } + return 0; +} + /* when register 'regno' is passed into function that will read 'access_size' * bytes from that pointer, make sure that it's within stack boundary * and all elements of stack are initialized. @@ -1767,7 +1790,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, { struct bpf_reg_state *reg = cur_regs(env) + regno; struct bpf_func_state *state = func(env, reg); - int off, i, slot, spi; + int err, min_off, max_off, i, slot, spi;
if (reg->type != PTR_TO_STACK) { /* Allow zero-byte read from NULL, regardless of pointer type */ @@ -1781,21 +1804,23 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, return -EACCES; }
- /* Only allow fixed-offset stack reads */ - if (!tnum_is_const(reg->var_off)) { - char tn_buf[48]; - - tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "invalid variable stack read R%d var_off=%s\n", - regno, tn_buf); - return -EACCES; - } - off = reg->off + reg->var_off.value; - if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || - access_size < 0 || (access_size == 0 && !zero_size_allowed)) { - verbose(env, "invalid stack type R%d off=%d access_size=%d\n", - regno, off, access_size); - return -EACCES; + if (tnum_is_const(reg->var_off)) { + min_off = max_off = reg->var_off.value + reg->off; + err = __check_stack_boundary(env, regno, min_off, access_size, + zero_size_allowed); + if (err) + return err; + } else { + min_off = reg->smin_value + reg->off; + max_off = reg->umax_value + reg->off; + err = __check_stack_boundary(env, regno, min_off, access_size, + zero_size_allowed); + if (err) + return err; + err = __check_stack_boundary(env, regno, max_off, access_size, + zero_size_allowed); + if (err) + return err; }
if (meta && meta->raw_mode) { @@ -1804,10 +1829,10 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, return 0; }
- for (i = 0; i < access_size; i++) { + for (i = min_off; i < max_off + access_size; i++) { u8 *stype;
- slot = -(off + i) - 1; + slot = -i - 1; spi = slot / BPF_REG_SIZE; if (state->allocated_stack <= slot) goto err; @@ -1820,8 +1845,16 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, goto mark; } err: - verbose(env, "invalid indirect read from stack off %d+%d size %d\n", - off, i, access_size); + if (tnum_is_const(reg->var_off)) { + verbose(env, "invalid indirect read from stack off %d+%d size %d\n", + min_off, i - min_off, access_size); + } else { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", + tn_buf, i - min_off, access_size); + } return -EACCES; mark: /* reading any byte out of 8-byte 'spill_slot' will cause @@ -1830,7 +1863,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, mark_reg_read(env, &state->stack[spi].spilled_ptr, state->stack[spi].spilled_ptr.parent); } - return update_stack_depth(env, state, off); + return update_stack_depth(env, state, min_off); }
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
From: Andrey Ignatov rdna@fb.com
commit f2bcd05ec7b839ff826d2008506ad2d2dff46a59 upstream.
It's hard to guarantee that whole memory is marked as initialized on helper return if uninitialized stack is accessed with variable offset since specific bounds are unknown to verifier. This may cause uninitialized stack leaking.
Reject such an access in check_stack_boundary to prevent possible leaking.
There are no known use-cases for indirect uninitialized stack access with variable offset so it shouldn't break anything.
Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers") Reported-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Andrey Ignatov rdna@fb.com Signed-off-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- kernel/bpf/verifier.c | 9 +++++++++ 1 file changed, 9 insertions(+)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 47395fa40219..a5360b603e4c 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1811,6 +1811,15 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, if (err) return err; } else { + /* Only initialized buffer on stack is allowed to be accessed + * with variable offset. With uninitialized buffer it's hard to + * guarantee that whole memory is marked as initialized on + * helper return since specific bounds are unknown what may + * cause uninitialized stack leaking. + */ + if (meta && meta->raw_mode) + meta = NULL; + min_off = reg->smin_value + reg->off; max_off = reg->umax_value + reg->off; err = __check_stack_boundary(env, regno, min_off, access_size,
From: Andrey Ignatov rdna@fb.com
commit 088ec26d9c2da9d879ab73e3f4117f9df6c566ee upstream.
Proper support of indirect stack access with variable offset in unprivileged mode (!root) requires corresponding support in Spectre masking for stack ALU in retrieve_ptr_limit().
There are no use-case for variable offset in unprivileged mode though so make verifier reject such accesses for simplicity.
Pointer arithmetics is one (and only?) way to cause variable offset and it's already rejected in unpriv mode so that verifier won't even get to helper function whose argument contains variable offset, e.g.:
0: (7a) *(u64 *)(r10 -16) = 0 1: (7a) *(u64 *)(r10 -8) = 0 2: (61) r2 = *(u32 *)(r1 +0) 3: (57) r2 &= 4 4: (17) r2 -= 16 5: (0f) r2 += r10 variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2 stack pointer arithmetic goes out of range, prohibited for !root
Still it looks like a good idea to reject variable offset indirect stack access for unprivileged mode in check_stack_boundary() explicitly.
Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers") Reported-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Andrey Ignatov rdna@fb.com Signed-off-by: Daniel Borkmann daniel@iogearbox.net [OP: drop comment in retrieve_ptr_limit()] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- kernel/bpf/verifier.c | 13 +++++++++++++ 1 file changed, 13 insertions(+)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index a5360b603e4c..d2f3bbff3175 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1811,6 +1811,19 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, if (err) return err; } else { + /* Variable offset is prohibited for unprivileged mode for + * simplicity since it requires corresponding support in + * Spectre masking for stack ALU. + * See also retrieve_ptr_limit(). + */ + if (!env->allow_ptr_leaks) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", + regno, tn_buf); + return -EACCES; + } /* Only initialized buffer on stack is allowed to be accessed * with variable offset. With uninitialized buffer it's hard to * guarantee that whole memory is marked as initialized on
From: Andrey Ignatov rdna@fb.com
commit 107c26a70ca81bfc33657366ad69d02fdc9efc9d upstream.
As discussed in [1] max value of variable offset has to be checked for overflow on stack access otherwise verifier would accept code like this:
0: (b7) r2 = 6 1: (b7) r3 = 28 2: (7a) *(u64 *)(r10 -16) = 0 3: (7a) *(u64 *)(r10 -8) = 0 4: (79) r4 = *(u64 *)(r1 +168) 5: (c5) if r4 s< 0x0 goto pc+4 R1=ctx(id=0,off=0,imm=0) R2=inv6 R3=inv28 R4=inv(id=0,umax_value=9223372036854775807,var_off=(0x0; 0x7fffffffffffffff)) R10=fp0,call_-1 fp-8=mmmmmmmm fp-16=mmmmmmmm 6: (17) r4 -= 16 7: (0f) r4 += r10 8: (b7) r5 = 8 9: (85) call bpf_getsockopt#57 10: (b7) r0 = 0 11: (95) exit
, where R4 obviosly has unbounded max value.
Fix it by checking that reg->smax_value is inside (-BPF_MAX_VAR_OFF; BPF_MAX_VAR_OFF) range.
reg->smax_value is used instead of reg->umax_value because stack pointers are calculated using negative offset from fp. This is opposite to e.g. map access where offset must be non-negative and where umax_value is used.
Also dedicated verbose logs are added for both min and max bound check failures to have diagnostics consistent with variable offset handling in check_map_access().
[1] https://marc.info/?l=linux-netdev&m=155433357510597&w=2
Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers") Reported-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Andrey Ignatov rdna@fb.com Signed-off-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- kernel/bpf/verifier.c | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index d2f3bbff3175..3168f331258e 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1833,16 +1833,28 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, if (meta && meta->raw_mode) meta = NULL;
+ if (reg->smax_value >= BPF_MAX_VAR_OFF || + reg->smax_value <= -BPF_MAX_VAR_OFF) { + verbose(env, "R%d unbounded indirect variable offset stack access\n", + regno); + return -EACCES; + } min_off = reg->smin_value + reg->off; - max_off = reg->umax_value + reg->off; + max_off = reg->smax_value + reg->off; err = __check_stack_boundary(env, regno, min_off, access_size, zero_size_allowed); - if (err) + if (err) { + verbose(env, "R%d min value is outside of stack bound\n", + regno); return err; + } err = __check_stack_boundary(env, regno, max_off, access_size, zero_size_allowed); - if (err) + if (err) { + verbose(env, "R%d max value is outside of stack bound\n", + regno); return err; + } }
if (meta && meta->raw_mode) {
From: Andrey Ignatov rdna@fb.com
commit 8ff80e96e3ccea5ff0a890d4f18997e0344dbec2 upstream.
Test different scenarios of indirect variable-offset stack access: out of bound access (>0), min_off below initialized part of the stack, max_off+size above initialized part of the stack, initialized stack.
Example of output: ... #856/p indirect variable-offset stack access, out of bound OK #857/p indirect variable-offset stack access, max_off+size > max_initialized OK #858/p indirect variable-offset stack access, min_off < min_initialized OK #859/p indirect variable-offset stack access, ok OK ...
Signed-off-by: Andrey Ignatov rdna@fb.com Signed-off-by: Alexei Starovoitov ast@kernel.org [OP: backport to 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- tools/testing/selftests/bpf/test_verifier.c | 79 ++++++++++++++++++++- 1 file changed, 77 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/bpf/test_verifier.c b/tools/testing/selftests/bpf/test_verifier.c index 6b9ed915c6b0..1ded69b9fd77 100644 --- a/tools/testing/selftests/bpf/test_verifier.c +++ b/tools/testing/selftests/bpf/test_verifier.c @@ -8495,7 +8495,7 @@ static struct bpf_test tests[] = { .prog_type = BPF_PROG_TYPE_LWT_IN, }, { - "indirect variable-offset stack access", + "indirect variable-offset stack access, out of bound", .insns = { /* Fill the top 8 bytes of the stack */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), @@ -8516,10 +8516,85 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 5 }, - .errstr = "variable stack read R2", + .errstr = "invalid stack type R2 var_off", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, + { + "indirect variable-offset stack access, max_off+size > max_initialized", + .insns = { + /* Fill only the second from top 8 bytes of the stack. */ + BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, 0), + /* Get an unknown value. */ + BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), + /* Make it small and 4-byte aligned. */ + BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 16), + /* Add it to fp. We now have either fp-12 or fp-16, but we don't know + * which. fp-12 size 8 is partially uninitialized stack. + */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10), + /* Dereference it indirectly. */ + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 5 }, + .errstr = "invalid indirect read from stack var_off", + .result = REJECT, + .prog_type = BPF_PROG_TYPE_LWT_IN, + }, + { + "indirect variable-offset stack access, min_off < min_initialized", + .insns = { + /* Fill only the top 8 bytes of the stack. */ + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + /* Get an unknown value */ + BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), + /* Make it small and 4-byte aligned. */ + BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 16), + /* Add it to fp. We now have either fp-12 or fp-16, but we don't know + * which. fp-16 size 8 is partially uninitialized stack. + */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10), + /* Dereference it indirectly. */ + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 5 }, + .errstr = "invalid indirect read from stack var_off", + .result = REJECT, + .prog_type = BPF_PROG_TYPE_LWT_IN, + }, + { + "indirect variable-offset stack access, ok", + .insns = { + /* Fill the top 16 bytes of the stack. */ + BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, 0), + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + /* Get an unknown value. */ + BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), + /* Make it small and 4-byte aligned. */ + BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 16), + /* Add it to fp. We now have either fp-12 or fp-16, we don't know + * which, but either way it points to initialized stack. + */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10), + /* Dereference it indirectly. */ + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 6 }, + .result = ACCEPT, + .prog_type = BPF_PROG_TYPE_LWT_IN, + }, { "direct stack access with 32-bit wraparound. test1", .insns = {
From: Alexei Starovoitov ast@kernel.org
commit f7cf25b2026dc8441e0fa3a202c2aa8a56211e30 upstream.
Compilers often spill induction variables into the stack, hence it is necessary for the verifier to track scalar values of the registers through stack slots.
Also few bpf programs were incorrectly rejected in the past, since the verifier was not able to track such constants while they were used to compute offsets into packet headers.
Tracking constants through the stack significantly decreases the chances of state pruning, since two different constants are considered to be different by state equivalency. End result that cilium tests suffer serious degradation in the number of states processed and corresponding verification time increase.
before after bpf_lb-DLB_L3.o 1838 6441 bpf_lb-DLB_L4.o 3218 5908 bpf_lb-DUNKNOWN.o 1064 1064 bpf_lxc-DDROP_ALL.o 26935 93790 bpf_lxc-DUNKNOWN.o 34439 123886 bpf_netdev.o 9721 31413 bpf_overlay.o 6184 18561 bpf_lxc_jit.o 39389 359445
After further debugging turned out that cillium progs are getting hurt by clang due to the same constant tracking issue. Newer clang generates better code by spilling less to the stack. Instead it keeps more constants in the registers which hurts state pruning since the verifier already tracks constants in the registers: old clang new clang (no spill/fill tracking introduced by this patch) bpf_lb-DLB_L3.o 1838 1923 bpf_lb-DLB_L4.o 3218 3077 bpf_lb-DUNKNOWN.o 1064 1062 bpf_lxc-DDROP_ALL.o 26935 166729 bpf_lxc-DUNKNOWN.o 34439 174607 bpf_netdev.o 9721 8407 bpf_overlay.o 6184 5420 bpf_lcx_jit.o 39389 39389
The final table is depressing: old clang old clang new clang new clang const spill/fill const spill/fill bpf_lb-DLB_L3.o 1838 6441 1923 8128 bpf_lb-DLB_L4.o 3218 5908 3077 6707 bpf_lb-DUNKNOWN.o 1064 1064 1062 1062 bpf_lxc-DDROP_ALL.o 26935 93790 166729 380712 bpf_lxc-DUNKNOWN.o 34439 123886 174607 440652 bpf_netdev.o 9721 31413 8407 31904 bpf_overlay.o 6184 18561 5420 23569 bpf_lxc_jit.o 39389 359445 39389 359445
Tracking constants in the registers hurts state pruning already. Adding tracking of constants through stack hurts pruning even more. The later patch address this general constant tracking issue with coarse/precise logic.
Signed-off-by: Alexei Starovoitov ast@kernel.org Acked-by: Andrii Nakryiko andriin@fb.com Signed-off-by: Daniel Borkmann daniel@iogearbox.net [OP: - drop verbose_linfo() calls, as the function is not implemented in 4.19 - adjust mark_reg_read() calls to match the prototype in 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- kernel/bpf/verifier.c | 86 +++++++++++++++++++++++++++++++------------ 1 file changed, 63 insertions(+), 23 deletions(-)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 3168f331258e..ce051c0b9a54 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -963,6 +963,23 @@ static bool register_is_null(struct bpf_reg_state *reg) return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); }
+static bool register_is_const(struct bpf_reg_state *reg) +{ + return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); +} + +static void save_register_state(struct bpf_func_state *state, + int spi, struct bpf_reg_state *reg) +{ + int i; + + state->stack[spi].spilled_ptr = *reg; + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + + for (i = 0; i < BPF_REG_SIZE; i++) + state->stack[spi].slot_type[i] = STACK_SPILL; +} + /* check_stack_read/write functions track spill/fill of registers, * stack boundary and alignment are checked in check_mem_access() */ @@ -972,7 +989,7 @@ static int check_stack_write(struct bpf_verifier_env *env, { struct bpf_func_state *cur; /* state of the current function */ int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; - enum bpf_reg_type type; + struct bpf_reg_state *reg = NULL;
err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), true); @@ -989,27 +1006,36 @@ static int check_stack_write(struct bpf_verifier_env *env, }
cur = env->cur_state->frame[env->cur_state->curframe]; - if (value_regno >= 0 && - is_spillable_regtype((type = cur->regs[value_regno].type))) { + if (value_regno >= 0) + reg = &cur->regs[value_regno];
+ if (reg && size == BPF_REG_SIZE && register_is_const(reg) && + !register_is_null(reg) && env->allow_ptr_leaks) { + save_register_state(state, spi, reg); + } else if (reg && is_spillable_regtype(reg->type)) { /* register containing pointer is being spilled into stack */ if (size != BPF_REG_SIZE) { verbose(env, "invalid size of register spill\n"); return -EACCES; }
- if (state != cur && type == PTR_TO_STACK) { + if (state != cur && reg->type == PTR_TO_STACK) { verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); return -EINVAL; }
- /* save register state */ - state->stack[spi].spilled_ptr = cur->regs[value_regno]; - state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + if (!env->allow_ptr_leaks) { + bool sanitize = false;
- for (i = 0; i < BPF_REG_SIZE; i++) { - if (state->stack[spi].slot_type[i] == STACK_MISC && - !env->allow_ptr_leaks) { + if (state->stack[spi].slot_type[0] == STACK_SPILL && + register_is_const(&state->stack[spi].spilled_ptr)) + sanitize = true; + for (i = 0; i < BPF_REG_SIZE; i++) + if (state->stack[spi].slot_type[i] == STACK_MISC) { + sanitize = true; + break; + } + if (sanitize) { int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; int soff = (-spi - 1) * BPF_REG_SIZE;
@@ -1032,8 +1058,8 @@ static int check_stack_write(struct bpf_verifier_env *env, } *poff = soff; } - state->stack[spi].slot_type[i] = STACK_SPILL; } + save_register_state(state, spi, reg); } else { u8 type = STACK_MISC;
@@ -1056,8 +1082,7 @@ static int check_stack_write(struct bpf_verifier_env *env, state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
/* when we zero initialize stack slots mark them as such */ - if (value_regno >= 0 && - register_is_null(&cur->regs[value_regno])) + if (reg && register_is_null(reg)) type = STACK_ZERO;
/* Mark slots affected by this stack write. */ @@ -1075,6 +1100,7 @@ static int check_stack_read(struct bpf_verifier_env *env, struct bpf_verifier_state *vstate = env->cur_state; struct bpf_func_state *state = vstate->frame[vstate->curframe]; int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; + struct bpf_reg_state *reg; u8 *stype;
if (reg_state->allocated_stack <= slot) { @@ -1083,11 +1109,20 @@ static int check_stack_read(struct bpf_verifier_env *env, return -EACCES; } stype = reg_state->stack[spi].slot_type; + reg = ®_state->stack[spi].spilled_ptr;
if (stype[0] == STACK_SPILL) { if (size != BPF_REG_SIZE) { - verbose(env, "invalid size of register spill\n"); - return -EACCES; + if (reg->type != SCALAR_VALUE) { + verbose(env, "invalid size of register fill\n"); + return -EACCES; + } + if (value_regno >= 0) { + mark_reg_unknown(env, state->regs, value_regno); + state->regs[value_regno].live |= REG_LIVE_WRITTEN; + } + mark_reg_read(env, reg, reg->parent); + return 0; } for (i = 1; i < BPF_REG_SIZE; i++) { if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { @@ -1098,16 +1133,14 @@ static int check_stack_read(struct bpf_verifier_env *env,
if (value_regno >= 0) { /* restore register state from stack */ - state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; + state->regs[value_regno] = *reg; /* mark reg as written since spilled pointer state likely * has its liveness marks cleared by is_state_visited() * which resets stack/reg liveness for state transitions */ state->regs[value_regno].live |= REG_LIVE_WRITTEN; } - mark_reg_read(env, ®_state->stack[spi].spilled_ptr, - reg_state->stack[spi].spilled_ptr.parent); - return 0; + mark_reg_read(env, reg, reg->parent); } else { int zeros = 0;
@@ -1122,8 +1155,7 @@ static int check_stack_read(struct bpf_verifier_env *env, off, i, size); return -EACCES; } - mark_reg_read(env, ®_state->stack[spi].spilled_ptr, - reg_state->stack[spi].spilled_ptr.parent); + mark_reg_read(env, reg, reg->parent); if (value_regno >= 0) { if (zeros == size) { /* any size read into register is zero extended, @@ -1136,8 +1168,8 @@ static int check_stack_read(struct bpf_verifier_env *env, } state->regs[value_regno].live |= REG_LIVE_WRITTEN; } - return 0; } + return 0; }
static int check_stack_access(struct bpf_verifier_env *env, @@ -1790,7 +1822,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, { struct bpf_reg_state *reg = cur_regs(env) + regno; struct bpf_func_state *state = func(env, reg); - int err, min_off, max_off, i, slot, spi; + int err, min_off, max_off, i, j, slot, spi;
if (reg->type != PTR_TO_STACK) { /* Allow zero-byte read from NULL, regardless of pointer type */ @@ -1878,6 +1910,14 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, *stype = STACK_MISC; goto mark; } + if (state->stack[spi].slot_type[0] == STACK_SPILL && + state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { + __mark_reg_unknown(&state->stack[spi].spilled_ptr); + for (j = 0; j < BPF_REG_SIZE; j++) + state->stack[spi].slot_type[j] = STACK_MISC; + goto mark; + } + err: if (tnum_is_const(reg->var_off)) { verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
From: Alexei Starovoitov ast@kernel.org
commit fc559a70d57c6ee5443f7a750858503e94cdc941 upstream.
fix tests that incorrectly assumed that the verifier cannot track constants through stack.
Signed-off-by: Alexei Starovoitov ast@kernel.org Acked-by: Andrii Nakryiko andriin@fb.com Signed-off-by: Daniel Borkmann daniel@iogearbox.net [OP: backport to 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- tools/testing/selftests/bpf/test_verifier.c | 31 +++++++++++---------- 1 file changed, 17 insertions(+), 14 deletions(-)
diff --git a/tools/testing/selftests/bpf/test_verifier.c b/tools/testing/selftests/bpf/test_verifier.c index 1ded69b9fd77..858e55143233 100644 --- a/tools/testing/selftests/bpf/test_verifier.c +++ b/tools/testing/selftests/bpf/test_verifier.c @@ -3888,7 +3888,8 @@ static struct bpf_test tests[] = { offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), - BPF_MOV64_IMM(BPF_REG_0, 0xffffffff), + BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, + offsetof(struct __sk_buff, mark)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff), @@ -6560,9 +6561,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, bitwise AND, zero included", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), @@ -6577,9 +6578,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, bitwise AND + JMP, wrong max", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65), @@ -6653,9 +6654,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, JMP, bounds + offset", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5), @@ -6674,9 +6675,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, JMP, wrong max", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4), @@ -6694,9 +6695,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, JMP, no max check", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_MOV64_IMM(BPF_REG_4, 0), @@ -6714,9 +6715,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, JMP, no min check", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3), @@ -6732,9 +6733,9 @@ static struct bpf_test tests[] = { { "helper access to variable memory: stack, JMP (signed), no min check", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), - BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3), @@ -6776,6 +6777,7 @@ static struct bpf_test tests[] = { { "helper access to variable memory: map, JMP, wrong max", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), @@ -6783,7 +6785,7 @@ static struct bpf_test tests[] = { BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), - BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_6), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, @@ -6795,7 +6797,7 @@ static struct bpf_test tests[] = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map2 = { 3 }, + .fixup_map2 = { 4 }, .errstr = "invalid access to map value, value_size=48 off=0 size=49", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, @@ -6830,6 +6832,7 @@ static struct bpf_test tests[] = { { "helper access to variable memory: map adjusted, JMP, wrong max", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), @@ -6838,7 +6841,7 @@ static struct bpf_test tests[] = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20), - BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_6), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, @@ -6850,7 +6853,7 @@ static struct bpf_test tests[] = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map2 = { 3 }, + .fixup_map2 = { 4 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, @@ -6872,8 +6875,8 @@ static struct bpf_test tests[] = { { "helper access to variable memory: size > 0 not allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)", .insns = { + BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_1, 0), - BPF_MOV64_IMM(BPF_REG_2, 1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), @@ -7100,6 +7103,7 @@ static struct bpf_test tests[] = { { "helper access to variable memory: 8 bytes leak", .insns = { + BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), @@ -7110,7 +7114,6 @@ static struct bpf_test tests[] = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), - BPF_MOV64_IMM(BPF_REG_2, 1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63),
From: Daniel Borkmann daniel@iogearbox.net
commit f5e81d1117501546b7be050c5fbafa6efd2c722c upstream.
In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already.
This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs.
The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers.
Co-developed-by: Piotr Krysiuk piotras@gmail.com Co-developed-by: Benedict Schlueter benedict.schlueter@rub.de Signed-off-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Piotr Krysiuk piotras@gmail.com Signed-off-by: Benedict Schlueter benedict.schlueter@rub.de Acked-by: Alexei Starovoitov ast@kernel.org [OP: adjusted context for 4.19, drop riscv and ppc32 changes] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- arch/arm/net/bpf_jit_32.c | 3 +++ arch/arm64/net/bpf_jit_comp.c | 13 +++++++++++++ arch/mips/net/ebpf_jit.c | 3 +++ arch/powerpc/net/bpf_jit_comp64.c | 6 ++++++ arch/s390/net/bpf_jit_comp.c | 5 +++++ arch/sparc/net/bpf_jit_comp_64.c | 3 +++ arch/x86/net/bpf_jit_comp.c | 7 +++++++ arch/x86/net/bpf_jit_comp32.c | 6 ++++++ include/linux/filter.h | 15 +++++++++++++++ kernel/bpf/core.c | 18 +++++++++++++++++- kernel/bpf/disasm.c | 16 +++++++++------- 11 files changed, 87 insertions(+), 8 deletions(-)
diff --git a/arch/arm/net/bpf_jit_32.c b/arch/arm/net/bpf_jit_32.c index 328ced7bfaf2..79b12e744537 100644 --- a/arch/arm/net/bpf_jit_32.c +++ b/arch/arm/net/bpf_jit_32.c @@ -1578,6 +1578,9 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code)); break; + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: diff --git a/arch/arm64/net/bpf_jit_comp.c b/arch/arm64/net/bpf_jit_comp.c index 7f0258ed1f5f..6876e8205042 100644 --- a/arch/arm64/net/bpf_jit_comp.c +++ b/arch/arm64/net/bpf_jit_comp.c @@ -685,6 +685,19 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) } break;
+ /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + /* + * Nothing required here. + * + * In case of arm64, we rely on the firmware mitigation of + * Speculative Store Bypass as controlled via the ssbd kernel + * parameter. Whenever the mitigation is enabled, it works + * for all of the kernel code with no need to provide any + * additional instructions. + */ + break; + /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: diff --git a/arch/mips/net/ebpf_jit.c b/arch/mips/net/ebpf_jit.c index 3832c4628608..947a7172c814 100644 --- a/arch/mips/net/ebpf_jit.c +++ b/arch/mips/net/ebpf_jit.c @@ -1282,6 +1282,9 @@ static int build_one_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, } break;
+ case BPF_ST | BPF_NOSPEC: /* speculation barrier */ + break; + case BPF_ST | BPF_B | BPF_MEM: case BPF_ST | BPF_H | BPF_MEM: case BPF_ST | BPF_W | BPF_MEM: diff --git a/arch/powerpc/net/bpf_jit_comp64.c b/arch/powerpc/net/bpf_jit_comp64.c index 7e3ab477f67f..e7d56ddba43a 100644 --- a/arch/powerpc/net/bpf_jit_comp64.c +++ b/arch/powerpc/net/bpf_jit_comp64.c @@ -596,6 +596,12 @@ static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, } break;
+ /* + * BPF_ST NOSPEC (speculation barrier) + */ + case BPF_ST | BPF_NOSPEC: + break; + /* * BPF_ST(X) */ diff --git a/arch/s390/net/bpf_jit_comp.c b/arch/s390/net/bpf_jit_comp.c index e42354b15e0b..2a36845dcbc0 100644 --- a/arch/s390/net/bpf_jit_comp.c +++ b/arch/s390/net/bpf_jit_comp.c @@ -883,6 +883,11 @@ static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i break; } break; + /* + * BPF_NOSPEC (speculation barrier) + */ + case BPF_ST | BPF_NOSPEC: + break; /* * BPF_ST(X) */ diff --git a/arch/sparc/net/bpf_jit_comp_64.c b/arch/sparc/net/bpf_jit_comp_64.c index ec4da4dc98f1..1bb1e64d4377 100644 --- a/arch/sparc/net/bpf_jit_comp_64.c +++ b/arch/sparc/net/bpf_jit_comp_64.c @@ -1261,6 +1261,9 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) emit(opcode | RS1(src) | rs2 | RD(dst), ctx); break; } + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c index 924ca27a6139..81c3d4b4c7e2 100644 --- a/arch/x86/net/bpf_jit_comp.c +++ b/arch/x86/net/bpf_jit_comp.c @@ -731,6 +731,13 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, } break;
+ /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + if (boot_cpu_has(X86_FEATURE_XMM2)) + /* Emit 'lfence' */ + EMIT3(0x0F, 0xAE, 0xE8); + break; + /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: if (is_ereg(dst_reg)) diff --git a/arch/x86/net/bpf_jit_comp32.c b/arch/x86/net/bpf_jit_comp32.c index adee990abab1..f48300988bc2 100644 --- a/arch/x86/net/bpf_jit_comp32.c +++ b/arch/x86/net/bpf_jit_comp32.c @@ -1683,6 +1683,12 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, i++; break; } + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + if (boot_cpu_has(X86_FEATURE_XMM2)) + /* Emit 'lfence' */ + EMIT3(0x0F, 0xAE, 0xE8); + break; /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: diff --git a/include/linux/filter.h b/include/linux/filter.h index 7c84762cb59e..e981bd92a4e3 100644 --- a/include/linux/filter.h +++ b/include/linux/filter.h @@ -64,6 +64,11 @@ struct sock_reuseport; /* unused opcode to mark call to interpreter with arguments */ #define BPF_CALL_ARGS 0xe0
+/* unused opcode to mark speculation barrier for mitigating + * Speculative Store Bypass + */ +#define BPF_NOSPEC 0xc0 + /* As per nm, we expose JITed images as text (code) section for * kallsyms. That way, tools like perf can find it to match * addresses. @@ -354,6 +359,16 @@ struct sock_reuseport; .off = 0, \ .imm = 0 })
+/* Speculation barrier */ + +#define BPF_ST_NOSPEC() \ + ((struct bpf_insn) { \ + .code = BPF_ST | BPF_NOSPEC, \ + .dst_reg = 0, \ + .src_reg = 0, \ + .off = 0, \ + .imm = 0 }) + /* Internal classic blocks for direct assignment */
#define __BPF_STMT(CODE, K) \ diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index d2b6d2459aad..341402bc1202 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -33,6 +33,7 @@ #include <linux/rcupdate.h> #include <linux/perf_event.h>
+#include <asm/barrier.h> #include <asm/unaligned.h>
/* Registers */ @@ -1050,6 +1051,7 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) /* Non-UAPI available opcodes. */ [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, + [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, }; #undef BPF_INSN_3_LBL #undef BPF_INSN_2_LBL @@ -1356,7 +1358,21 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) JMP_EXIT: return BPF_R0;
- /* STX and ST and LDX*/ + /* ST, STX and LDX*/ + ST_NOSPEC: + /* Speculation barrier for mitigating Speculative Store Bypass. + * In case of arm64, we rely on the firmware mitigation as + * controlled via the ssbd kernel parameter. Whenever the + * mitigation is enabled, it works for all of the kernel code + * with no need to provide any additional instructions here. + * In case of x86, we use 'lfence' insn for mitigation. We + * reuse preexisting logic from Spectre v1 mitigation that + * happens to produce the required code on x86 for v4 as well. + */ +#ifdef CONFIG_X86 + barrier_nospec(); +#endif + CONT; #define LDST(SIZEOP, SIZE) \ STX_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ diff --git a/kernel/bpf/disasm.c b/kernel/bpf/disasm.c index d6b76377cb6e..cbd75dd5992e 100644 --- a/kernel/bpf/disasm.c +++ b/kernel/bpf/disasm.c @@ -171,15 +171,17 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs, else verbose(cbs->private_data, "BUG_%02x\n", insn->code); } else if (class == BPF_ST) { - if (BPF_MODE(insn->code) != BPF_MEM) { + if (BPF_MODE(insn->code) == BPF_MEM) { + verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = %d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->imm); + } else if (BPF_MODE(insn->code) == 0xc0 /* BPF_NOSPEC, no UAPI */) { + verbose(cbs->private_data, "(%02x) nospec\n", insn->code); + } else { verbose(cbs->private_data, "BUG_st_%02x\n", insn->code); - return; } - verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = %d\n", - insn->code, - bpf_ldst_string[BPF_SIZE(insn->code) >> 3], - insn->dst_reg, - insn->off, insn->imm); } else if (class == BPF_LDX) { if (BPF_MODE(insn->code) != BPF_MEM) { verbose(cbs->private_data, "BUG_ldx_%02x\n", insn->code);
From: Daniel Borkmann daniel@iogearbox.net
commit 2039f26f3aca5b0e419b98f65dd36481337b86ee upstream.
Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5:
A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed.
af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate this attack by sanitizing the memory locations through preemptive "fast" (low latency) stores of zero prior to the actual "slow" (high latency) store of a pointer value such that upon dependency misprediction the CPU then speculatively executes the load of the pointer value and retrieves the zero value instead of the attacker controlled scalar value previously stored at that location, meaning, subsequent access in the speculative domain is then redirected to the "zero page".
The sanitized preemptive store of zero prior to the actual "slow" store is done through a simple ST instruction based on r10 (frame pointer) with relative offset to the stack location that the verifier has been tracking on the original used register for STX, which does not have to be r10. Thus, there are no memory dependencies for this store, since it's only using r10 and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency operation.
However, a recent attack demonstrated that this mitigation is not sufficient since the preemptive store of zero could also be turned into a "slow" store and is thus bypassed as well:
[...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value 31: (7b) *(u64 *)(r10 -16) = r2 // r9 will remain "fast" register, r10 will become "slow" register below 32: (bf) r9 = r10 // JIT maps BPF reg to x86 reg: // r9 -> r15 (callee saved) // r10 -> rbp // train store forward prediction to break dependency link between both r9 // and r10 by evicting them from the predictor's LRU table. 33: (61) r0 = *(u32 *)(r7 +24576) 34: (63) *(u32 *)(r7 +29696) = r0 35: (61) r0 = *(u32 *)(r7 +24580) 36: (63) *(u32 *)(r7 +29700) = r0 37: (61) r0 = *(u32 *)(r7 +24584) 38: (63) *(u32 *)(r7 +29704) = r0 39: (61) r0 = *(u32 *)(r7 +24588) 40: (63) *(u32 *)(r7 +29708) = r0 [...] 543: (61) r0 = *(u32 *)(r7 +25596) 544: (63) *(u32 *)(r7 +30716) = r0 // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain // in hardware registers. rbp becomes slow due to push/pop latency. below is // disasm of bpf_ringbuf_output() helper for better visual context: // // ffffffff8117ee20: 41 54 push r12 // ffffffff8117ee22: 55 push rbp // ffffffff8117ee23: 53 push rbx // ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc // ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken // [...] // ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea // ffffffff8117eee7: 5b pop rbx // ffffffff8117eee8: 5d pop rbp // ffffffff8117eee9: 4c 89 e0 mov rax,r12 // ffffffff8117eeec: 41 5c pop r12 // ffffffff8117eeee: c3 ret 545: (18) r1 = map[id:4] 547: (bf) r2 = r7 548: (b7) r3 = 0 549: (b7) r4 = 4 550: (85) call bpf_ringbuf_output#194288 // instruction 551 inserted by verifier \ 551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here // storing map value pointer r7 at fp-16 | since value of r10 is "slow". 552: (7b) *(u64 *)(r10 -16) = r7 / // following "fast" read to the same memory location, but due to dependency // misprediction it will speculatively execute before insn 551/552 completes. 553: (79) r2 = *(u64 *)(r9 -16) // in speculative domain contains attacker controlled r2. in non-speculative // domain this contains r7, and thus accesses r7 +0 below. 554: (71) r3 = *(u8 *)(r2 +0) // leak r3
As can be seen, the current speculative store bypass mitigation which the verifier inserts at line 551 is insufficient since /both/, the write of the zero sanitation as well as the map value pointer are a high latency instruction due to prior memory access via push/pop of r10 (rbp) in contrast to the low latency read in line 553 as r9 (r15) which stays in hardware registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally, fp-16 can still be r2.
Initial thoughts to address this issue was to track spilled pointer loads from stack and enforce their load via LDX through r10 as well so that /both/ the preemptive store of zero /as well as/ the load use the /same/ register such that a dependency is created between the store and load. However, this option is not sufficient either since it can be bypassed as well under speculation. An updated attack with pointer spill/fills now _all_ based on r10 would look as follows:
[...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value [...] // longer store forward prediction training sequence than before. 2062: (61) r0 = *(u32 *)(r7 +25588) 2063: (63) *(u32 *)(r7 +30708) = r0 2064: (61) r0 = *(u32 *)(r7 +25592) 2065: (63) *(u32 *)(r7 +30712) = r0 2066: (61) r0 = *(u32 *)(r7 +25596) 2067: (63) *(u32 *)(r7 +30716) = r0 // store the speculative load address (scalar) this time after the store // forward prediction training. 2068: (7b) *(u64 *)(r10 -16) = r2 // preoccupy the CPU store port by running sequence of dummy stores. 2069: (63) *(u32 *)(r7 +29696) = r0 2070: (63) *(u32 *)(r7 +29700) = r0 2071: (63) *(u32 *)(r7 +29704) = r0 2072: (63) *(u32 *)(r7 +29708) = r0 2073: (63) *(u32 *)(r7 +29712) = r0 2074: (63) *(u32 *)(r7 +29716) = r0 2075: (63) *(u32 *)(r7 +29720) = r0 2076: (63) *(u32 *)(r7 +29724) = r0 2077: (63) *(u32 *)(r7 +29728) = r0 2078: (63) *(u32 *)(r7 +29732) = r0 2079: (63) *(u32 *)(r7 +29736) = r0 2080: (63) *(u32 *)(r7 +29740) = r0 2081: (63) *(u32 *)(r7 +29744) = r0 2082: (63) *(u32 *)(r7 +29748) = r0 2083: (63) *(u32 *)(r7 +29752) = r0 2084: (63) *(u32 *)(r7 +29756) = r0 2085: (63) *(u32 *)(r7 +29760) = r0 2086: (63) *(u32 *)(r7 +29764) = r0 2087: (63) *(u32 *)(r7 +29768) = r0 2088: (63) *(u32 *)(r7 +29772) = r0 2089: (63) *(u32 *)(r7 +29776) = r0 2090: (63) *(u32 *)(r7 +29780) = r0 2091: (63) *(u32 *)(r7 +29784) = r0 2092: (63) *(u32 *)(r7 +29788) = r0 2093: (63) *(u32 *)(r7 +29792) = r0 2094: (63) *(u32 *)(r7 +29796) = r0 2095: (63) *(u32 *)(r7 +29800) = r0 2096: (63) *(u32 *)(r7 +29804) = r0 2097: (63) *(u32 *)(r7 +29808) = r0 2098: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; same as before, also including the // sanitation store with 0 from the current mitigation by the verifier. 2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here 2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy. // load from stack intended to bypass stores. 2101: (79) r2 = *(u64 *)(r10 -16) 2102: (71) r3 = *(u8 *)(r2 +0) // leak r3 [...]
Looking at the CPU microarchitecture, the scheduler might issue loads (such as seen in line 2101) before stores (line 2099,2100) because the load execution units become available while the store execution unit is still busy with the sequence of dummy stores (line 2069-2098). And so the load may use the prior stored scalar from r2 at address r10 -16 for speculation. The updated attack may work less reliable on CPU microarchitectures where loads and stores share execution resources.
This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf: Prevent memory disambiguation attack") is insufficient. Moreover, the detection of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been written to a given stack slot where a pointer value is now to be stored does not have sufficient coverage as precondition for the mitigation either; for several reasons outlined as follows:
1) Stack content from prior program runs could still be preserved and is therefore not "random", best example is to split a speculative store bypass attack between tail calls, program A would prepare and store the oob address at a given stack slot and then tail call into program B which does the "slow" store of a pointer to the stack with subsequent "fast" read. From program B PoV such stack slot type is STACK_INVALID, and therefore also must be subject to mitigation.
2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr) condition, for example, the previous content of that memory location could also be a pointer to map or map value. Without the fix, a speculative store bypass is not mitigated in such precondition and can then lead to a type confusion in the speculative domain leaking kernel memory near these pointer types.
While brainstorming on various alternative mitigation possibilities, we also stumbled upon a retrospective from Chrome developers [0]:
[...] For variant 4, we implemented a mitigation to zero the unused memory of the heap prior to allocation, which cost about 1% when done concurrently and 4% for scavenging. Variant 4 defeats everything we could think of. We explored more mitigations for variant 4 but the threat proved to be more pervasive and dangerous than we anticipated. For example, stack slots used by the register allocator in the optimizing compiler could be subject to type confusion, leading to pointer crafting. Mitigating type confusion for stack slots alone would have required a complete redesign of the backend of the optimizing compiler, perhaps man years of work, without a guarantee of completeness. [...]
From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills to the BPF stack:
[...] // preoccupy the CPU store port by running sequence of dummy stores. [...] 2106: (63) *(u32 *)(r7 +29796) = r0 2107: (63) *(u32 *)(r7 +29800) = r0 2108: (63) *(u32 *)(r7 +29804) = r0 2109: (63) *(u32 *)(r7 +29808) = r0 2110: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; xored with random 'secret' value // of 943576462 before store ... 2111: (b4) w11 = 943576462 2112: (af) r11 ^= r7 2113: (7b) *(u64 *)(r10 -16) = r11 2114: (79) r11 = *(u64 *)(r10 -16) 2115: (b4) w2 = 943576462 2116: (af) r2 ^= r11 // ... and restored with the same 'secret' value with the help of AX reg. 2117: (71) r3 = *(u8 *)(r2 +0) [...]
While the above would not prevent speculation, it would make data leakage infeasible by directing it to random locations. In order to be effective and prevent type confusion under speculation, such random secret would have to be regenerated for each store. The additional complexity involved for a tracking mechanism that prevents jumps such that restoring spilled pointers would not get corrupted is not worth the gain for unprivileged. Hence, the fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC instruction which the x86 JIT translates into a lfence opcode. Inserting the latter in between the store and load instruction is one of the mitigations options [1]. The x86 instruction manual notes:
[...] An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible. [...]
The latter meaning that the preceding store instruction finished execution and the store is at minimum guaranteed to be in the CPU's store queue, but it's not guaranteed to be in that CPU's L1 cache at that point (globally visible). The latter would only be guaranteed via sfence. So the load which is guaranteed to execute after the lfence for that local CPU would have to rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:
[...] For every store operation that is added to the ROB, an entry is allocated in the store buffer. This entry requires both the virtual and physical address of the target. Only if there is no free entry in the store buffer, the frontend stalls until there is an empty slot available in the store buffer again. Otherwise, the CPU can immediately continue adding subsequent instructions to the ROB and execute them out of order. On Intel CPUs, the store buffer has up to 56 entries. [...]
One small upside on the fix is that it lifts constraints from af86ca4e3088 where the sanitize_stack_off relative to r10 must be the same when coming from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX or BPF_ST instruction. This happens either when we store a pointer or data value to the BPF stack for the first time, or upon later pointer spills. The former needs to be enforced since otherwise stale stack data could be leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST | BPF_NOSPEC mapping is currently optimized away, but others could emit a speculation barrier as well if necessary. For real-world unprivileged programs e.g. generated by LLVM, pointer spill/fill is only generated upon register pressure and LLVM only tries to do that for pointers which are not used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC sanitation for the STACK_INVALID case when the first write to a stack slot occurs e.g. upon map lookup. In future we might refine ways to mitigate the latter cost.
[0] https://arxiv.org/pdf/1902.05178.pdf [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-specul... [2] https://arxiv.org/pdf/1905.05725.pdf
Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack") Fixes: f7cf25b2026d ("bpf: track spill/fill of constants") Co-developed-by: Piotr Krysiuk piotras@gmail.com Co-developed-by: Benedict Schlueter benedict.schlueter@rub.de Signed-off-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Piotr Krysiuk piotras@gmail.com Signed-off-by: Benedict Schlueter benedict.schlueter@rub.de Acked-by: Alexei Starovoitov ast@kernel.org [OP: - apply check_stack_write_fixed_off() changes in check_stack_write() - replace env->bypass_spec_v4 -> env->allow_ptr_leaks] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- include/linux/bpf_verifier.h | 2 +- kernel/bpf/verifier.c | 88 ++++++++++++++---------------------- 2 files changed, 34 insertions(+), 56 deletions(-)
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index daab0960c054..e64ac93f7f4c 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -158,8 +158,8 @@ struct bpf_insn_aux_data { u32 alu_limit; /* limit for add/sub register with pointer */ }; int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ - int sanitize_stack_off; /* stack slot to be cleared */ bool seen; /* this insn was processed by the verifier */ + bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ u8 alu_state; /* used in combination with alu_limit */ };
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index ce051c0b9a54..d38ec3266a84 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1008,6 +1008,19 @@ static int check_stack_write(struct bpf_verifier_env *env, cur = env->cur_state->frame[env->cur_state->curframe]; if (value_regno >= 0) reg = &cur->regs[value_regno]; + if (!env->allow_ptr_leaks) { + bool sanitize = reg && is_spillable_regtype(reg->type); + + for (i = 0; i < size; i++) { + if (state->stack[spi].slot_type[i] == STACK_INVALID) { + sanitize = true; + break; + } + } + + if (sanitize) + env->insn_aux_data[insn_idx].sanitize_stack_spill = true; + }
if (reg && size == BPF_REG_SIZE && register_is_const(reg) && !register_is_null(reg) && env->allow_ptr_leaks) { @@ -1018,47 +1031,10 @@ static int check_stack_write(struct bpf_verifier_env *env, verbose(env, "invalid size of register spill\n"); return -EACCES; } - if (state != cur && reg->type == PTR_TO_STACK) { verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); return -EINVAL; } - - if (!env->allow_ptr_leaks) { - bool sanitize = false; - - if (state->stack[spi].slot_type[0] == STACK_SPILL && - register_is_const(&state->stack[spi].spilled_ptr)) - sanitize = true; - for (i = 0; i < BPF_REG_SIZE; i++) - if (state->stack[spi].slot_type[i] == STACK_MISC) { - sanitize = true; - break; - } - if (sanitize) { - int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; - int soff = (-spi - 1) * BPF_REG_SIZE; - - /* detected reuse of integer stack slot with a pointer - * which means either llvm is reusing stack slot or - * an attacker is trying to exploit CVE-2018-3639 - * (speculative store bypass) - * Have to sanitize that slot with preemptive - * store of zero. - */ - if (*poff && *poff != soff) { - /* disallow programs where single insn stores - * into two different stack slots, since verifier - * cannot sanitize them - */ - verbose(env, - "insn %d cannot access two stack slots fp%d and fp%d", - insn_idx, *poff, soff); - return -EINVAL; - } - *poff = soff; - } - } save_register_state(state, spi, reg); } else { u8 type = STACK_MISC; @@ -5867,34 +5843,33 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) insn = env->prog->insnsi + delta;
for (i = 0; i < insn_cnt; i++, insn++) { + bool ctx_access; + if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || insn->code == (BPF_LDX | BPF_MEM | BPF_H) || insn->code == (BPF_LDX | BPF_MEM | BPF_W) || - insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) + insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { type = BPF_READ; - else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || - insn->code == (BPF_STX | BPF_MEM | BPF_H) || - insn->code == (BPF_STX | BPF_MEM | BPF_W) || - insn->code == (BPF_STX | BPF_MEM | BPF_DW)) + ctx_access = true; + } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || + insn->code == (BPF_STX | BPF_MEM | BPF_H) || + insn->code == (BPF_STX | BPF_MEM | BPF_W) || + insn->code == (BPF_STX | BPF_MEM | BPF_DW) || + insn->code == (BPF_ST | BPF_MEM | BPF_B) || + insn->code == (BPF_ST | BPF_MEM | BPF_H) || + insn->code == (BPF_ST | BPF_MEM | BPF_W) || + insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { type = BPF_WRITE; - else + ctx_access = BPF_CLASS(insn->code) == BPF_STX; + } else { continue; + }
if (type == BPF_WRITE && - env->insn_aux_data[i + delta].sanitize_stack_off) { + env->insn_aux_data[i + delta].sanitize_stack_spill) { struct bpf_insn patch[] = { - /* Sanitize suspicious stack slot with zero. - * There are no memory dependencies for this store, - * since it's only using frame pointer and immediate - * constant of zero - */ - BPF_ST_MEM(BPF_DW, BPF_REG_FP, - env->insn_aux_data[i + delta].sanitize_stack_off, - 0), - /* the original STX instruction will immediately - * overwrite the same stack slot with appropriate value - */ *insn, + BPF_ST_NOSPEC(), };
cnt = ARRAY_SIZE(patch); @@ -5908,6 +5883,9 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) continue; }
+ if (!ctx_access) + continue; + if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) continue;
From: Lorenz Bauer lmb@cloudflare.com
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream.
func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env.
Signed-off-by: Lorenz Bauer lmb@cloudflare.com Signed-off-by: Alexei Starovoitov ast@kernel.org Acked-by: Edward Cree ecree.xilinx@gmail.com Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com [OP: adjusted context for 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- include/linux/bpf_verifier.h | 8 +++++++ kernel/bpf/verifier.c | 42 +++++++++++------------------------- 2 files changed, 21 insertions(+), 29 deletions(-)
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index e64ac93f7f4c..729c65b320d4 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -127,6 +127,13 @@ struct bpf_func_state { struct bpf_stack_state *stack; };
+struct bpf_id_pair { + u32 old; + u32 cur; +}; + +/* Maximum number of register states that can exist at once */ +#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) #define MAX_CALL_FRAMES 8 struct bpf_verifier_state { /* call stack tracking */ @@ -213,6 +220,7 @@ struct bpf_verifier_env { struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ struct bpf_verifier_log log; struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; + struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE]; u32 subprog_cnt; };
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index d38ec3266a84..883fb762d93c 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -4783,13 +4783,6 @@ static bool range_within(struct bpf_reg_state *old, old->smax_value >= cur->smax_value; }
-/* Maximum number of register states that can exist at once */ -#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) -struct idpair { - u32 old; - u32 cur; -}; - /* If in the old state two registers had the same id, then they need to have * the same id in the new state as well. But that id could be different from * the old state, so we need to track the mapping from old to new ids. @@ -4800,11 +4793,11 @@ struct idpair { * So we look through our idmap to see if this old id has been seen before. If * so, we require the new id to match; otherwise, we add the id pair to the map. */ -static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) +static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) { unsigned int i;
- for (i = 0; i < ID_MAP_SIZE; i++) { + for (i = 0; i < BPF_ID_MAP_SIZE; i++) { if (!idmap[i].old) { /* Reached an empty slot; haven't seen this id before */ idmap[i].old = old_id; @@ -4821,7 +4814,7 @@ static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
/* Returns true if (rold safe implies rcur safe) */ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, - struct idpair *idmap) + struct bpf_id_pair *idmap) { bool equal;
@@ -4925,7 +4918,7 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
static bool stacksafe(struct bpf_func_state *old, struct bpf_func_state *cur, - struct idpair *idmap) + struct bpf_id_pair *idmap) { int i, spi;
@@ -5011,29 +5004,20 @@ static bool stacksafe(struct bpf_func_state *old, * whereas register type in current state is meaningful, it means that * the current state will reach 'bpf_exit' instruction safely */ -static bool func_states_equal(struct bpf_func_state *old, +static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, struct bpf_func_state *cur) { - struct idpair *idmap; - bool ret = false; int i;
- idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); - /* If we failed to allocate the idmap, just say it's not safe */ - if (!idmap) - return false; + memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); + for (i = 0; i < MAX_BPF_REG; i++) + if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch)) + return false;
- for (i = 0; i < MAX_BPF_REG; i++) { - if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) - goto out_free; - } + if (!stacksafe(old, cur, env->idmap_scratch)) + return false;
- if (!stacksafe(old, cur, idmap)) - goto out_free; - ret = true; -out_free: - kfree(idmap); - return ret; + return true; }
static bool states_equal(struct bpf_verifier_env *env, @@ -5057,7 +5041,7 @@ static bool states_equal(struct bpf_verifier_env *env, for (i = 0; i <= old->curframe; i++) { if (old->frame[i]->callsite != cur->frame[i]->callsite) return false; - if (!func_states_equal(old->frame[i], cur->frame[i])) + if (!func_states_equal(env, old->frame[i], cur->frame[i])) return false; } return true;
From: Daniel Borkmann daniel@iogearbox.net
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream.
In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space.
The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307.
One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch.
Signed-off-by: Daniel Borkmann daniel@iogearbox.net Acked-by: Alexei Starovoitov ast@kernel.org [OP: adjusted context for 4.19] Signed-off-by: Ovidiu Panait ovidiu.panait@windriver.com --- include/linux/bpf_verifier.h | 1 + kernel/bpf/verifier.c | 27 +++++++++++++++++---------- 2 files changed, 18 insertions(+), 10 deletions(-)
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index 729c65b320d4..4acd06cca703 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -215,6 +215,7 @@ struct bpf_verifier_env { struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ u32 used_map_cnt; /* number of used maps */ u32 id_gen; /* used to generate unique reg IDs */ + bool explore_alu_limits; bool allow_ptr_leaks; bool seen_direct_write; struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 883fb762d93c..9a671f604ebf 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -2871,6 +2871,12 @@ static int sanitize_ptr_alu(struct bpf_verifier_env *env, alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; alu_state |= ptr_is_dst_reg ? BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; + + /* Limit pruning on unknown scalars to enable deep search for + * potential masking differences from other program paths. + */ + if (!off_is_imm) + env->explore_alu_limits = true; }
err = update_alu_sanitation_state(aux, alu_state, alu_limit); @@ -4813,8 +4819,8 @@ static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) }
/* Returns true if (rold safe implies rcur safe) */ -static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, - struct bpf_id_pair *idmap) +static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, + struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) { bool equal;
@@ -4840,6 +4846,8 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, return false; switch (rold->type) { case SCALAR_VALUE: + if (env->explore_alu_limits) + return false; if (rcur->type == SCALAR_VALUE) { /* new val must satisfy old val knowledge */ return range_within(rold, rcur) && @@ -4916,9 +4924,8 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, return false; }
-static bool stacksafe(struct bpf_func_state *old, - struct bpf_func_state *cur, - struct bpf_id_pair *idmap) +static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, + struct bpf_func_state *cur, struct bpf_id_pair *idmap) { int i, spi;
@@ -4960,9 +4967,8 @@ static bool stacksafe(struct bpf_func_state *old, continue; if (old->stack[spi].slot_type[0] != STACK_SPILL) continue; - if (!regsafe(&old->stack[spi].spilled_ptr, - &cur->stack[spi].spilled_ptr, - idmap)) + if (!regsafe(env, &old->stack[spi].spilled_ptr, + &cur->stack[spi].spilled_ptr, idmap)) /* when explored and current stack slot are both storing * spilled registers, check that stored pointers types * are the same as well. @@ -5011,10 +5017,11 @@ static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_stat
memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); for (i = 0; i < MAX_BPF_REG; i++) - if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch)) + if (!regsafe(env, &old->regs[i], &cur->regs[i], + env->idmap_scratch)) return false;
- if (!stacksafe(old, cur, env->idmap_scratch)) + if (!stacksafe(env, old, cur, env->idmap_scratch)) return false;
return true;
On Mon, Sep 13, 2021 at 06:35:24PM +0300, Ovidiu Panait wrote:
Backport summary
679c782de14b ("bpf/verifier: per-register parent pointers")
- Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation").
- Context adjustments because of the code added by post-4.19 commit: f92a819b4cbef ("bpf: prevent out of bounds speculation on pointer arithmetic").
0bae2d4d62d5 ("bpf: correct slot_type marking logic to allow more stack slot sharing")
- Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation").
- Minor context adjustement in selftest.
2011fccfb61b ("bpf: Support variable offset stack access from helpers")
- Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation").
- 4.19 does not have the reg_state(env, regno) helper defined, so replace the call with "cur_regs(env) + regno".
f2bcd05ec7b8 ("bpf: Reject indirect var_off stack access in raw mode")
- Follow-up fix for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers").
- Clean cherry-pick.
088ec26d9c2d ("bpf: Reject indirect var_off stack access in unpriv")
- Follow-up fix for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers").
- Drop comment in retrieve_ptr_limit(), as it was made obsolete by post-4.19 commit 45bfdd767e235 ("bpf: Tighten speculative pointer arithmetic mask").
107c26a70ca8 ("bpf: Sanity check max value for var_off stack access")
- Follow-up fix for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers").
- Clean cherry-pick.
8ff80e96e3cc ("selftests/bpf: Test variable offset stack access")
- Selftest follow-up for 2011fccfb61bb ("bpf: Support variable offset stack access from helpers").
- Post-4.19, the verifier tests were split into different files, in 4.19 they are still all in test_verifier.c, so apply the changes manually.
f7cf25b2026d ("bpf: track spill/fill of constants")
- Context patch for 2039f26f3aca5 ("bpf: Fix leakage due to insufficient speculative store bypass mitigation").
- Drop verbose_linfo() calls, as the function is not implemented in 4.19.
- Adjust mark_reg_read() calls to match the prototype in 4.19. (mark_reg_read() was changed to take 4 parameters in post-4.19 commit 5327ed3d44b75("bpf: verifier: mark verified-insn with sub-register zext flag"), but backporting it is out of scope for this patchseries).
fc559a70d57c ("selftests/bpf: fix tests due to const spill/fill")
- Selftest follow-up for f7cf25b2026d ("bpf: track spill/fill of constants").
- Post-4.19, the verifier tests were split into different files, in 4.19 they are still all in test_verifier.c, so apply the changes manually.
f5e81d111750 ("bpf: Introduce BPF nospec instruction for mitigating Spectre v4")
- Contextual adjustments.
- Drop arch/powerpc/net/bpf_jit_comp32.c changes, as the file is not present in 4.19
- Drop riscv changes, as arch/riscv/net/bpf_jit_comp.c file is not present in 4.19
2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
- Contextual adjustments.
- Apply check_stack_write_fixed_off() changes in check_stack_write().
- Replace env->bypass_spec_v4 -> env->allow_ptr_leaks.
c9e73e3d2b1e ("bpf: verifier: Allocate idmap scratch in verifier env") e042aa532c84 ("bpf: Fix pointer arithmetic mask tightening under state")
- Contextual adjustments.
With this patchseries all bpf verifier selftests pass (tested in qemu for x86_64): root@intel-x86-64:~# ./test_verifier ... #663/p pass modified ctx pointer to helper, 3 OK #664/p mov64 src == dst OK #665/p mov64 src != dst OK #666/u calls: ctx read at start of subprog OK #666/p calls: ctx read at start of subprog OK Summary: 932 PASSED, 0 SKIPPED, 0 FAILED
All now queued up, thanks for the backports!
greg k-h
linux-stable-mirror@lists.linaro.org