This is a note to let you know that I've just added the patch titled
arm64: asid: Do not replace active_asids if already 0
to the 4.15-stable tree which can be found at: http://www.kernel.org/git/?p=linux/kernel/git/stable/stable-queue.git%3Ba=su...
The filename of the patch is: arm64-asid-do-not-replace-active_asids-if-already-0.patch and it can be found in the queue-4.15 subdirectory.
If you, or anyone else, feels it should not be added to the stable tree, please let stable@vger.kernel.org know about it.
From foo@baz Mon Apr 9 10:16:32 CEST 2018
From: Catalin Marinas catalin.marinas@arm.com Date: Wed, 27 Dec 2017 15:12:56 +0000 Subject: arm64: asid: Do not replace active_asids if already 0
From: Catalin Marinas catalin.marinas@arm.com
[ Upstream commit a8ffaaa060b8d4da6138e0958cb0f45b73e1cb78 ]
Under some uncommon timing conditions, a generation check and xchg(active_asids, A1) in check_and_switch_context() on P1 can race with an ASID roll-over on P2. If P2 has not seen the update to active_asids[P1], it can re-allocate A1 to a new task T2 on P2. P1 ends up waiting on the spinlock since the xchg() returned 0 while P2 can go through a second ASID roll-over with (T2,A1,G2) active on P2. This roll-over copies active_asids[P1] == A1,G1 into reserved_asids[P1] and active_asids[P2] == A1,G2 into reserved_asids[P2]. A subsequent scheduling of T1 on P1 and T2 on P2 would match reserved_asids and get their generation bumped to G3:
P1 P2 -- -- TTBR0.BADDR = T0 TTBR0.ASID = A0 asid_generation = G1 check_and_switch_context(T1,A1,G1) generation match check_and_switch_context(T2,A0,G0) new_context() ASID roll-over asid_generation = G2 flush_context() active_asids[P1] = 0 asid_map[A1] = 0 reserved_asids[P1] = A0,G0 xchg(active_asids, A1) active_asids[P1] = A1,G1 xchg returns 0 spin_lock_irqsave() allocated ASID (T2,A1,G2) asid_map[A1] = 1 active_asids[P2] = A1,G2 ... check_and_switch_context(T3,A0,G0) new_context() ASID roll-over asid_generation = G3 flush_context() active_asids[P1] = 0 asid_map[A1] = 1 reserved_asids[P1] = A1,G1 reserved_asids[P2] = A1,G2 allocated ASID (T3,A2,G3) asid_map[A2] = 1 active_asids[P2] = A2,G3 new_context() check_update_reserved_asid(A1,G1) matches reserved_asid[P1] reserved_asid[P1] = A1,G3 updated T1 ASID to (T1,A1,G3) check_and_switch_context(T2,A1,G2) new_context() check_and_switch_context(A1,G2) matches reserved_asids[P2] reserved_asids[P2] = A1,G3 updated T2 ASID to (T2,A1,G3)
At this point, we have two tasks, T1 and T2 both using ASID A1 with the latest generation G3. Any of them is allowed to be scheduled on the other CPU leading to two different tasks with the same ASID on the same CPU.
This patch changes the xchg to cmpxchg so that the active_asids is only updated if non-zero to avoid a race with an ASID roll-over on a different CPU.
The ASID allocation algorithm has been formally verified using the TLA+ model checker (see https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git/tree... for the spec).
Reviewed-by: Will Deacon will.deacon@arm.com Signed-off-by: Catalin Marinas catalin.marinas@arm.com Signed-off-by: Sasha Levin alexander.levin@microsoft.com Signed-off-by: Greg Kroah-Hartman gregkh@linuxfoundation.org --- arch/arm64/mm/context.c | 19 +++++++++++-------- 1 file changed, 11 insertions(+), 8 deletions(-)
--- a/arch/arm64/mm/context.c +++ b/arch/arm64/mm/context.c @@ -194,26 +194,29 @@ set_asid: void check_and_switch_context(struct mm_struct *mm, unsigned int cpu) { unsigned long flags; - u64 asid; + u64 asid, old_active_asid;
asid = atomic64_read(&mm->context.id);
/* * The memory ordering here is subtle. - * If our ASID matches the current generation, then we update - * our active_asids entry with a relaxed xchg. Racing with a - * concurrent rollover means that either: + * If our active_asids is non-zero and the ASID matches the current + * generation, then we update the active_asids entry with a relaxed + * cmpxchg. Racing with a concurrent rollover means that either: * - * - We get a zero back from the xchg and end up waiting on the + * - We get a zero back from the cmpxchg and end up waiting on the * lock. Taking the lock synchronises with the rollover and so * we are forced to see the updated generation. * - * - We get a valid ASID back from the xchg, which means the + * - We get a valid ASID back from the cmpxchg, which means the * relaxed xchg in flush_context will treat us as reserved * because atomic RmWs are totally ordered for a given location. */ - if (!((asid ^ atomic64_read(&asid_generation)) >> asid_bits) - && atomic64_xchg_relaxed(&per_cpu(active_asids, cpu), asid)) + old_active_asid = atomic64_read(&per_cpu(active_asids, cpu)); + if (old_active_asid && + !((asid ^ atomic64_read(&asid_generation)) >> asid_bits) && + atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu), + old_active_asid, asid)) goto switch_mm_fastpath;
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
Patches currently in stable-queue which might be from catalin.marinas@arm.com are
queue-4.15/arm64-asid-do-not-replace-active_asids-if-already-0.patch