commit 3c7501722e6b31a6e56edd23cea5e77dbb9ffd1a upstream.
Mitigation for MDS is to use VERW instruction to clear any secrets in CPU Buffers. Any memory accesses after VERW execution can still remain in CPU buffers. It is safer to execute VERW late in return to user path to minimize the window in which kernel data can end up in CPU buffers. There are not many kernel secrets to be had after SWITCH_TO_USER_CR3.
Add support for deploying VERW mitigation after user register state is restored. This helps minimize the chances of kernel data ending up into CPU buffers after executing VERW.
Note that the mitigation at the new location is not yet enabled.
Corner case not handled ======================= Interrupts returning to kernel don't clear CPUs buffers since the exit-to-user path is expected to do that anyways. But, there could be a case when an NMI is generated in kernel after the exit-to-user path has cleared the buffers. This case is not handled and NMI returning to kernel don't clear CPU buffers because:
1. It is rare to get an NMI after VERW, but before returning to user. 2. For an unprivileged user, there is no known way to make that NMI less rare or target it. 3. It would take a large number of these precisely-timed NMIs to mount an actual attack. There's presumably not enough bandwidth. 4. The NMI in question occurs after a VERW, i.e. when user state is restored and most interesting data is already scrubbed. Whats left is only the data that NMI touches, and that may or may not be of any interest.
[ pawan: resolved conflict in syscall_return_via_sysret, added CLEAR_CPU_BUFFERS to USERGS_SYSRET64 ]
Suggested-by: Dave Hansen dave.hansen@intel.com Signed-off-by: Pawan Gupta pawan.kumar.gupta@linux.intel.com Signed-off-by: Dave Hansen dave.hansen@linux.intel.com Link: https://lore.kernel.org/all/20240213-delay-verw-v8-2-a6216d83edb7%40linux.in... --- arch/x86/entry/entry_64.S | 10 ++++++++++ arch/x86/entry/entry_64_compat.S | 1 + arch/x86/include/asm/irqflags.h | 1 + 3 files changed, 12 insertions(+)
diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S index 23212c53cef7..1631a9a1566e 100644 --- a/arch/x86/entry/entry_64.S +++ b/arch/x86/entry/entry_64.S @@ -615,6 +615,7 @@ SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) /* Restore RDI. */ popq %rdi SWAPGS + CLEAR_CPU_BUFFERS INTERRUPT_RETURN
@@ -721,6 +722,8 @@ native_irq_return_ldt: */ popq %rax /* Restore user RAX */
+ CLEAR_CPU_BUFFERS + /* * RSP now points to an ordinary IRET frame, except that the page * is read-only and RSP[31:16] are preloaded with the userspace @@ -1487,6 +1490,12 @@ nmi_restore: std movq $0, 5*8(%rsp) /* clear "NMI executing" */
+ /* + * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like + * NMI in kernel after user state is restored. For an unprivileged user + * these conditions are hard to meet. + */ + /* * iretq reads the "iret" frame and exits the NMI stack in a * single instruction. We are returning to kernel mode, so this @@ -1504,6 +1513,7 @@ SYM_CODE_END(asm_exc_nmi) SYM_CODE_START(ignore_sysret) UNWIND_HINT_EMPTY mov $-ENOSYS, %eax + CLEAR_CPU_BUFFERS sysretl SYM_CODE_END(ignore_sysret) #endif diff --git a/arch/x86/entry/entry_64_compat.S b/arch/x86/entry/entry_64_compat.S index 4d637a965efb..7f09e7ad3c74 100644 --- a/arch/x86/entry/entry_64_compat.S +++ b/arch/x86/entry/entry_64_compat.S @@ -319,6 +319,7 @@ sysret32_from_system_call: xorl %r9d, %r9d xorl %r10d, %r10d swapgs + CLEAR_CPU_BUFFERS sysretl SYM_CODE_END(entry_SYSCALL_compat)
diff --git a/arch/x86/include/asm/irqflags.h b/arch/x86/include/asm/irqflags.h index 8c86edefa115..f40dea50dfbf 100644 --- a/arch/x86/include/asm/irqflags.h +++ b/arch/x86/include/asm/irqflags.h @@ -134,6 +134,7 @@ static __always_inline unsigned long arch_local_irq_save(void) #define INTERRUPT_RETURN jmp native_iret #define USERGS_SYSRET64 \ swapgs; \ + CLEAR_CPU_BUFFERS; \ sysretq; #define USERGS_SYSRET32 \ swapgs; \