4.9-stable review patch. If anyone has any objections, please let me know.
------------------
From: Linus Torvalds torvalds@linux-foundation.org
commit 7a9cdebdcc17e426fb5287e4a82db1dfe86339b2 upstream.
Jann Horn points out that the vmacache_flush_all() function is not only potentially expensive, it's buggy too. It also happens to be entirely unnecessary, because the sequence number overflow case can be avoided by simply making the sequence number be 64-bit. That doesn't even grow the data structures in question, because the other adjacent fields are already 64-bit.
So simplify the whole thing by just making the sequence number overflow case go away entirely, which gets rid of all the complications and makes the code faster too. Win-win.
[ Oleg Nesterov points out that the VMACACHE_FULL_FLUSHES statistics also just goes away entirely with this ]
Reported-by: Jann Horn jannh@google.com Suggested-by: Will Deacon will.deacon@arm.com Acked-by: Davidlohr Bueso dave@stgolabs.net Cc: Oleg Nesterov oleg@redhat.com Cc: stable@kernel.org Signed-off-by: Linus Torvalds torvalds@linux-foundation.org Signed-off-by: Greg Kroah-Hartman gregkh@linuxfoundation.org
--- include/linux/mm_types.h | 2 +- include/linux/sched.h | 2 +- include/linux/vm_event_item.h | 1 - include/linux/vmacache.h | 5 ----- mm/debug.c | 4 ++-- mm/vmacache.c | 38 -------------------------------------- 6 files changed, 4 insertions(+), 48 deletions(-)
--- a/include/linux/mm_types.h +++ b/include/linux/mm_types.h @@ -396,7 +396,7 @@ struct kioctx_table; struct mm_struct { struct vm_area_struct *mmap; /* list of VMAs */ struct rb_root mm_rb; - u32 vmacache_seqnum; /* per-thread vmacache */ + u64 vmacache_seqnum; /* per-thread vmacache */ #ifdef CONFIG_MMU unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1559,7 +1559,7 @@ struct task_struct {
struct mm_struct *mm, *active_mm; /* per-thread vma caching */ - u32 vmacache_seqnum; + u64 vmacache_seqnum; struct vm_area_struct *vmacache[VMACACHE_SIZE]; #if defined(SPLIT_RSS_COUNTING) struct task_rss_stat rss_stat; --- a/include/linux/vm_event_item.h +++ b/include/linux/vm_event_item.h @@ -97,7 +97,6 @@ enum vm_event_item { PGPGIN, PGPGOUT, PS #ifdef CONFIG_DEBUG_VM_VMACACHE VMACACHE_FIND_CALLS, VMACACHE_FIND_HITS, - VMACACHE_FULL_FLUSHES, #endif NR_VM_EVENT_ITEMS }; --- a/include/linux/vmacache.h +++ b/include/linux/vmacache.h @@ -15,7 +15,6 @@ static inline void vmacache_flush(struct memset(tsk->vmacache, 0, sizeof(tsk->vmacache)); }
-extern void vmacache_flush_all(struct mm_struct *mm); extern void vmacache_update(unsigned long addr, struct vm_area_struct *newvma); extern struct vm_area_struct *vmacache_find(struct mm_struct *mm, unsigned long addr); @@ -29,10 +28,6 @@ extern struct vm_area_struct *vmacache_f static inline void vmacache_invalidate(struct mm_struct *mm) { mm->vmacache_seqnum++; - - /* deal with overflows */ - if (unlikely(mm->vmacache_seqnum == 0)) - vmacache_flush_all(mm); }
#endif /* __LINUX_VMACACHE_H */ --- a/mm/debug.c +++ b/mm/debug.c @@ -95,7 +95,7 @@ EXPORT_SYMBOL(dump_vma);
void dump_mm(const struct mm_struct *mm) { - pr_emerg("mm %p mmap %p seqnum %d task_size %lu\n" + pr_emerg("mm %p mmap %p seqnum %llu task_size %lu\n" #ifdef CONFIG_MMU "get_unmapped_area %p\n" #endif @@ -125,7 +125,7 @@ void dump_mm(const struct mm_struct *mm) #endif "def_flags: %#lx(%pGv)\n",
- mm, mm->mmap, mm->vmacache_seqnum, mm->task_size, + mm, mm->mmap, (long long) mm->vmacache_seqnum, mm->task_size, #ifdef CONFIG_MMU mm->get_unmapped_area, #endif --- a/mm/vmacache.c +++ b/mm/vmacache.c @@ -6,44 +6,6 @@ #include <linux/vmacache.h>
/* - * Flush vma caches for threads that share a given mm. - * - * The operation is safe because the caller holds the mmap_sem - * exclusively and other threads accessing the vma cache will - * have mmap_sem held at least for read, so no extra locking - * is required to maintain the vma cache. - */ -void vmacache_flush_all(struct mm_struct *mm) -{ - struct task_struct *g, *p; - - count_vm_vmacache_event(VMACACHE_FULL_FLUSHES); - - /* - * Single threaded tasks need not iterate the entire - * list of process. We can avoid the flushing as well - * since the mm's seqnum was increased and don't have - * to worry about other threads' seqnum. Current's - * flush will occur upon the next lookup. - */ - if (atomic_read(&mm->mm_users) == 1) - return; - - rcu_read_lock(); - for_each_process_thread(g, p) { - /* - * Only flush the vmacache pointers as the - * mm seqnum is already set and curr's will - * be set upon invalidation when the next - * lookup is done. - */ - if (mm == p->mm) - vmacache_flush(p); - } - rcu_read_unlock(); -} - -/* * This task may be accessing a foreign mm via (for example) * get_user_pages()->find_vma(). The vmacache is task-local and this * task's vmacache pertains to a different mm (ie, its own). There is