Hi!
From: Sergey Senozhatsky sergey.senozhatsky@gmail.com
commit ab6f762f0f53162d41497708b33c9a3236d3609e upstream.
printk_deferred(), similarly to printk_safe/printk_nmi, does not immediately attempt to print a new message on the consoles, avoiding calls into non-reentrant kernel paths, e.g. scheduler or timekeeping, which potentially can deadlock the system.
Those printk() flavors, instead, rely on per-CPU flush irq_work to print messages from safer contexts. For same reasons (recursive scheduler or timekeeping calls) printk() uses per-CPU irq_work in order to wake up user space syslog/kmsg readers.
However, only printk_safe/printk_nmi do make sure that per-CPU areas have been initialised and that it's safe to modify per-CPU irq_work. This means that, for instance, should printk_deferred() be invoked "too early", that is before per-CPU areas are initialised, printk_deferred() will perform illegal per-CPU access.
Lech Perczak [0] reports that after commit 1b710b1b10ef ("char/random: silence a lockdep splat with printk()") user-space syslog/kmsg readers are not able to read new kernel messages.
Is this still needed in 4.19? 1b710b1b10ef was reverted in 4.19, so there should not be any user-visible problems...
Best regards, Pavel