On a signal handler return, the user could set a context with MSR[TS] bits set, and these bits would be copied to task regs->msr.
At restore_tm_sigcontexts(), after current task regs->msr[TS] bits are set, several __get_user() are called and then a recheckpoint is executed.
This is a problem since a page fault (in kernel space) could happen when calling __get_user(). If it happens, the process MSR[TS] bits were already set, but recheckpoint was not executed, and SPRs are still invalid.
The page fault can cause the current process to be de-scheduled, with MSR[TS] active and without tm_recheckpoint() being called. More importantly, without TEXAR[FS] bit set also.
Since TEXASR might not have the FS bit set, and when the process is scheduled back, it will try to reclaim, which will be aborted because of the CPU is not in the suspended state, and, then, recheckpoint. This recheckpoint will restore thread->texasr into TEXASR SPR, which might be zero, hitting a BUG_ON().
[ 2181.457997] kernel BUG at arch/powerpc/kernel/tm.S:446!
This patch simply delays the MSR[TS] set, so, if there is any page fault in the __get_user() section, it does not have regs->msr[TS] set, since the TM structures are still invalid, thus avoiding doing TM operations for in-kernel exceptions and possible process reschedule.
With this patch, the MSR[TS] will only be set just before recheckpointing and setting TEXASR[FS] = 1, thus avoiding an interrupt with TM registers in invalid state.
It is not possible to move tm_recheckpoint to happen earlier, because it is required to get the checkpointed registers from userspace, with __get_user(), thus, the only way to avoid this undesired behavior is delaying the MSR[TS] set, as done in this patch.
Fixes: 87b4e5393af7 ("powerpc/tm: Fix return of active 64bit signals") Cc: stable@vger.kernel.org (v3.9+) Signed-off-by: Breno Leitao leitao@debian.org --- arch/powerpc/kernel/signal_64.c | 29 +++++++++++++++-------------- 1 file changed, 15 insertions(+), 14 deletions(-)
diff --git a/arch/powerpc/kernel/signal_64.c b/arch/powerpc/kernel/signal_64.c index 83d51bf586c7..15b153bdd826 100644 --- a/arch/powerpc/kernel/signal_64.c +++ b/arch/powerpc/kernel/signal_64.c @@ -467,20 +467,6 @@ static long restore_tm_sigcontexts(struct task_struct *tsk, if (MSR_TM_RESV(msr)) return -EINVAL;
- /* pull in MSR TS bits from user context */ - regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr & MSR_TS_MASK); - - /* - * Ensure that TM is enabled in regs->msr before we leave the signal - * handler. It could be the case that (a) user disabled the TM bit - * through the manipulation of the MSR bits in uc_mcontext or (b) the - * TM bit was disabled because a sufficient number of context switches - * happened whilst in the signal handler and load_tm overflowed, - * disabling the TM bit. In either case we can end up with an illegal - * TM state leading to a TM Bad Thing when we return to userspace. - */ - regs->msr |= MSR_TM; - /* pull in MSR LE from user context */ regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
@@ -572,6 +558,21 @@ static long restore_tm_sigcontexts(struct task_struct *tsk, tm_enable(); /* Make sure the transaction is marked as failed */ tsk->thread.tm_texasr |= TEXASR_FS; + + /* pull in MSR TS bits from user context */ + regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr & MSR_TS_MASK); + + /* + * Ensure that TM is enabled in regs->msr before we leave the signal + * handler. It could be the case that (a) user disabled the TM bit + * through the manipulation of the MSR bits in uc_mcontext or (b) the + * TM bit was disabled because a sufficient number of context switches + * happened whilst in the signal handler and load_tm overflowed, + * disabling the TM bit. In either case we can end up with an illegal + * TM state leading to a TM Bad Thing when we return to userspace. + */ + regs->msr |= MSR_TM; + /* This loads the checkpointed FP/VEC state, if used */ tm_recheckpoint(&tsk->thread);