On Thu, Apr 04, 2024 at 05:33:16PM +0200, Vlastimil Babka wrote:
Sven reports an infinite loop in __alloc_pages_slowpath() for costly order __GFP_RETRY_MAYFAIL allocations that are also GFP_NOIO. Such combination can happen in a suspend/resume context where a GFP_KERNEL allocation can have __GFP_IO masked out via gfp_allowed_mask.
Quoting Sven:
try to do a "costly" allocation (order > PAGE_ALLOC_COSTLY_ORDER) with __GFP_RETRY_MAYFAIL set.
page alloc's __alloc_pages_slowpath tries to get a page from the freelist. This fails because there is nothing free of that costly order.
page alloc tries to reclaim by calling __alloc_pages_direct_reclaim, which bails out because a zone is ready to be compacted; it pretends to have made a single page of progress.
page alloc tries to compact, but this always bails out early because __GFP_IO is not set (it's not passed by the snd allocator, and even if it were, we are suspending so the __GFP_IO flag would be cleared anyway).
page alloc believes reclaim progress was made (because of the pretense in item 3) and so it checks whether it should retry compaction. The compaction retry logic thinks it should try again, because: a) reclaim is needed because of the early bail-out in item 4 b) a zonelist is suitable for compaction
goto 2. indefinite stall.
(end quote)
The immediate root cause is confusing the COMPACT_SKIPPED returned from __alloc_pages_direct_compact() (step 4) due to lack of __GFP_IO to be indicating a lack of order-0 pages, and in step 5 evaluating that in should_compact_retry() as a reason to retry, before incrementing and limiting the number of retries. There are however other places that wrongly assume that compaction can happen while we lack __GFP_IO.
To fix this, introduce gfp_compaction_allowed() to abstract the __GFP_IO evaluation and switch the open-coded test in try_to_compact_pages() to use it.
Also use the new helper in:
- compaction_ready(), which will make reclaim not bail out in step 3, so there's at least one attempt to actually reclaim, even if chances are small for a costly order
- in_reclaim_compaction() which will make should_continue_reclaim() return false and we don't over-reclaim unnecessarily
- in __alloc_pages_slowpath() to set a local variable can_compact, which is then used to avoid retrying reclaim/compaction for costly allocations (step 5) if we can't compact and also to skip the early compaction attempt that we do in some cases
Link: https://lkml.kernel.org/r/20240221114357.13655-2-vbabka@suse.cz Fixes: 3250845d0526 ("Revert "mm, oom: prevent premature OOM killer invocation for high order request"") Signed-off-by: Vlastimil Babka vbabka@suse.cz Reported-by: Sven van Ashbrook svenva@chromium.org Closes: https://lore.kernel.org/all/CAG-rBihs_xMKb3wrMO1%2B-%2Bp4fowP9oy1pa_OTkfxBzP... Tested-by: Karthikeyan Ramasubramanian kramasub@chromium.org Cc: Brian Geffon bgeffon@google.com Cc: Curtis Malainey cujomalainey@chromium.org Cc: Jaroslav Kysela perex@perex.cz Cc: Mel Gorman mgorman@techsingularity.net Cc: Michal Hocko mhocko@kernel.org Cc: Takashi Iwai tiwai@suse.com Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton akpm@linux-foundation.org (cherry picked from commit 803de9000f334b771afacb6ff3e78622916668b0) Signed-off-by: Vlastimil Babka vbabka@suse.cz
All backports now queued up, thanks!
greg k-h