4.14-stable review patch. If anyone has any objections, please let me know.
------------------
From: Andy Lutomirski luto@kernel.org
commit 6d9256f0a89eaff97fca6006100bcaea8d1d8bdb upstream.
When we start using an entry trampoline, a #GP from userspace will be delivered on the entry stack, not on the task stack. Fix the espfix64 #DF fixup to set up #GP according to TSS.SP0, rather than assuming that pt_regs + 1 == SP0. This won't change anything without an entry stack, but it will make the code continue to work when an entry stack is added.
While we're at it, improve the comments to explain what's actually going on.
Signed-off-by: Andy Lutomirski luto@kernel.org Signed-off-by: Thomas Gleixner tglx@linutronix.de Reviewed-by: Thomas Gleixner tglx@linutronix.de Reviewed-by: Borislav Petkov bp@suse.de Cc: Boris Ostrovsky boris.ostrovsky@oracle.com Cc: Borislav Petkov bp@alien8.de Cc: Borislav Petkov bpetkov@suse.de Cc: Brian Gerst brgerst@gmail.com Cc: Dave Hansen dave.hansen@intel.com Cc: Dave Hansen dave.hansen@linux.intel.com Cc: David Laight David.Laight@aculab.com Cc: Denys Vlasenko dvlasenk@redhat.com Cc: Eduardo Valentin eduval@amazon.com Cc: Greg KH gregkh@linuxfoundation.org Cc: H. Peter Anvin hpa@zytor.com Cc: Josh Poimboeuf jpoimboe@redhat.com Cc: Juergen Gross jgross@suse.com Cc: Linus Torvalds torvalds@linux-foundation.org Cc: Peter Zijlstra peterz@infradead.org Cc: Rik van Riel riel@redhat.com Cc: Will Deacon will.deacon@arm.com Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.130778051@linutronix.de Signed-off-by: Ingo Molnar mingo@kernel.org Signed-off-by: Greg Kroah-Hartman gregkh@linuxfoundation.org
--- arch/x86/kernel/traps.c | 37 ++++++++++++++++++++++++++++--------- 1 file changed, 28 insertions(+), 9 deletions(-)
--- a/arch/x86/kernel/traps.c +++ b/arch/x86/kernel/traps.c @@ -348,9 +348,15 @@ dotraplinkage void do_double_fault(struc
/* * If IRET takes a non-IST fault on the espfix64 stack, then we - * end up promoting it to a doublefault. In that case, modify - * the stack to make it look like we just entered the #GP - * handler from user space, similar to bad_iret. + * end up promoting it to a doublefault. In that case, take + * advantage of the fact that we're not using the normal (TSS.sp0) + * stack right now. We can write a fake #GP(0) frame at TSS.sp0 + * and then modify our own IRET frame so that, when we return, + * we land directly at the #GP(0) vector with the stack already + * set up according to its expectations. + * + * The net result is that our #GP handler will think that we + * entered from usermode with the bad user context. * * No need for ist_enter here because we don't use RCU. */ @@ -358,13 +364,26 @@ dotraplinkage void do_double_fault(struc regs->cs == __KERNEL_CS && regs->ip == (unsigned long)native_irq_return_iret) { - struct pt_regs *normal_regs = task_pt_regs(current); + struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss.x86_tss.sp0) - 1;
- /* Fake a #GP(0) from userspace. */ - memmove(&normal_regs->ip, (void *)regs->sp, 5*8); - normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */ + /* + * regs->sp points to the failing IRET frame on the + * ESPFIX64 stack. Copy it to the entry stack. This fills + * in gpregs->ss through gpregs->ip. + * + */ + memmove(&gpregs->ip, (void *)regs->sp, 5*8); + gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ + + /* + * Adjust our frame so that we return straight to the #GP + * vector with the expected RSP value. This is safe because + * we won't enable interupts or schedule before we invoke + * general_protection, so nothing will clobber the stack + * frame we just set up. + */ regs->ip = (unsigned long)general_protection; - regs->sp = (unsigned long)&normal_regs->orig_ax; + regs->sp = (unsigned long)&gpregs->orig_ax;
return; } @@ -389,7 +408,7 @@ dotraplinkage void do_double_fault(struc * * Processors update CR2 whenever a page fault is detected. If a * second page fault occurs while an earlier page fault is being - * deliv- ered, the faulting linear address of the second fault will + * delivered, the faulting linear address of the second fault will * overwrite the contents of CR2 (replacing the previous * address). These updates to CR2 occur even if the page fault * results in a double fault or occurs during the delivery of a