On 26.07.24 04:33, Baolin Wang wrote:
On 2024/7/26 02:39, David Hildenbrand wrote:
We recently made GUP's common page table walking code to also walk hugetlb VMAs without most hugetlb special-casing, preparing for the future of having less hugetlb-specific page table walking code in the codebase. Turns out that we missed one page table locking detail: page table locking for hugetlb folios that are not mapped using a single PMD/PUD.
Assume we have hugetlb folio that spans multiple PTEs (e.g., 64 KiB hugetlb folios on arm64 with 4 KiB base page size). GUP, as it walks the page tables, will perform a pte_offset_map_lock() to grab the PTE table lock.
However, hugetlb that concurrently modifies these page tables would actually grab the mm->page_table_lock: with USE_SPLIT_PTE_PTLOCKS, the locks would differ. Something similar can happen right now with hugetlb folios that span multiple PMDs when USE_SPLIT_PMD_PTLOCKS.
Let's make huge_pte_lockptr() effectively uses the same PT locks as any core-mm page table walker would.
Thanks for raising the issue again. I remember fixing this issue 2 years ago in commit fac35ba763ed ("mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb page"), but it seems to be broken again.
Ah, right! We fixed it by rerouting to hugetlb code that we then removed :D
Did we have a reproducer back then that would make my live easier?
There is one ugly case: powerpc 8xx, whereby we have an 8 MiB hugetlb folio being mapped using two PTE page tables. While hugetlb wants to take the PMD table lock, core-mm would grab the PTE table lock of one of both PTE page tables. In such corner cases, we have to make sure that both locks match, which is (fortunately!) currently guaranteed for 8xx as it does not support SMP.
Fixes: 9cb28da54643 ("mm/gup: handle hugetlb in the generic follow_page_mask code") Cc: stable@vger.kernel.org Signed-off-by: David Hildenbrand david@redhat.com
include/linux/hugetlb.h | 25 ++++++++++++++++++++++--- 1 file changed, 22 insertions(+), 3 deletions(-)
diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h index c9bf68c239a01..da800e56fe590 100644 --- a/include/linux/hugetlb.h +++ b/include/linux/hugetlb.h @@ -944,10 +944,29 @@ static inline bool htlb_allow_alloc_fallback(int reason) static inline spinlock_t *huge_pte_lockptr(struct hstate *h, struct mm_struct *mm, pte_t *pte) {
- if (huge_page_size(h) == PMD_SIZE)
- VM_WARN_ON(huge_page_size(h) == PAGE_SIZE);
- VM_WARN_ON(huge_page_size(h) >= P4D_SIZE);
- /*
* hugetlb must use the exact same PT locks as core-mm page table
* walkers would. When modifying a PTE table, hugetlb must take the
* PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
* PT lock etc.
*
* The expectation is that any hugetlb folio smaller than a PMD is
* always mapped into a single PTE table and that any hugetlb folio
* smaller than a PUD (but at least as big as a PMD) is always mapped
* into a single PMD table.
ARM64 also supports cont-PMD size hugetlb, which is 32MiB size with a 4 KiB base page size. This means the PT locks for 32MiB hugetlb may race again, as we currently only hold one PMD lock for several PMD entries of a cont-PMD size hugetlb.
Exactly, that's the case where all cont-PMD entries fall into the same page table.
That's also what I will try reproducing with (migration racing with GUP). But the race window is small and a lot of other stuff is protected by the VMA lock.