The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From 0abb33bfca0fb74df76aac03e90ce685016ef7be Mon Sep 17 00:00:00 2001
From: Matthew Auld <matthew.auld(a)intel.com>
Date: Tue, 13 Jul 2021 14:04:31 +0100
Subject: [PATCH] drm/i915/gtt: drop the page table optimisation
We skip filling out the pt with scratch entries if the va range covers
the entire pt, since we later have to fill it with the PTEs for the
object pages anyway. However this might leave open a small window where
the PTEs don't point to anything valid for the HW to consume.
When for example using 2M GTT pages this fill_px() showed up as being
quite significant in perf measurements, and ends up being completely
wasted since we ignore the pt and just use the pde directly.
Anyway, currently we have our PTE construction split between alloc and
insert, which is probably slightly iffy nowadays, since the alloc
doesn't actually allocate anything anymore, instead it just sets up the
page directories and points the PTEs at the scratch page. Later when we
do the insert step we re-program the PTEs again. Better might be to
squash the alloc and insert into a single step, then bringing back this
optimisation(along with some others) should be possible.
Fixes: 14826673247e ("drm/i915: Only initialize partially filled pagetables")
Signed-off-by: Matthew Auld <matthew.auld(a)intel.com>
Cc: Jon Bloomfield <jon.bloomfield(a)intel.com>
Cc: Chris Wilson <chris.p.wilson(a)intel.com>
Cc: Daniel Vetter <daniel(a)ffwll.ch>
Cc: <stable(a)vger.kernel.org> # v4.15+
Reviewed-by: Daniel Vetter <daniel.vetter(a)ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20210713130431.2392740-1-matt…
(cherry picked from commit 8f88ca76b3942d82e2c1cea8735ec368d89ecc15)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi(a)intel.com>
diff --git a/drivers/gpu/drm/i915/gt/gen8_ppgtt.c b/drivers/gpu/drm/i915/gt/gen8_ppgtt.c
index 21c8b7350b7a..da4f5eb43ac2 100644
--- a/drivers/gpu/drm/i915/gt/gen8_ppgtt.c
+++ b/drivers/gpu/drm/i915/gt/gen8_ppgtt.c
@@ -303,10 +303,7 @@ static void __gen8_ppgtt_alloc(struct i915_address_space * const vm,
__i915_gem_object_pin_pages(pt->base);
i915_gem_object_make_unshrinkable(pt->base);
- if (lvl ||
- gen8_pt_count(*start, end) < I915_PDES ||
- intel_vgpu_active(vm->i915))
- fill_px(pt, vm->scratch[lvl]->encode);
+ fill_px(pt, vm->scratch[lvl]->encode);
spin_lock(&pd->lock);
if (likely(!pd->entry[idx])) {
The patch below does not apply to the 4.19-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From 76ff371b67cb12fb635396234468abcf6a466f16 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Thu, 24 Jun 2021 19:03:54 -0700
Subject: [PATCH] KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d0456 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e13224 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda(a)google.com>
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210625020354.431829-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 8834822c00cd..ca5614a48b21 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -1923,7 +1923,7 @@ static int npf_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
+ u64 fault_address = svm->vmcb->control.exit_info_2;
u64 error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(fault_address, error_code);
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From 76ff371b67cb12fb635396234468abcf6a466f16 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Thu, 24 Jun 2021 19:03:54 -0700
Subject: [PATCH] KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d0456 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e13224 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda(a)google.com>
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210625020354.431829-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 8834822c00cd..ca5614a48b21 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -1923,7 +1923,7 @@ static int npf_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
+ u64 fault_address = svm->vmcb->control.exit_info_2;
u64 error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(fault_address, error_code);
The patch below does not apply to the 5.10-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From 76ff371b67cb12fb635396234468abcf6a466f16 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Thu, 24 Jun 2021 19:03:54 -0700
Subject: [PATCH] KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d0456 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e13224 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda(a)google.com>
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210625020354.431829-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 8834822c00cd..ca5614a48b21 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -1923,7 +1923,7 @@ static int npf_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
+ u64 fault_address = svm->vmcb->control.exit_info_2;
u64 error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(fault_address, error_code);
The patch below does not apply to the 5.12-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From 76ff371b67cb12fb635396234468abcf6a466f16 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Thu, 24 Jun 2021 19:03:54 -0700
Subject: [PATCH] KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d0456 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e13224 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda(a)google.com>
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210625020354.431829-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 8834822c00cd..ca5614a48b21 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -1923,7 +1923,7 @@ static int npf_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
+ u64 fault_address = svm->vmcb->control.exit_info_2;
u64 error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(fault_address, error_code);
The patch below does not apply to the 4.14-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From fc9bf2e087efcd81bda2e52d09616d2a1bf982a8 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Wed, 23 Jun 2021 16:05:49 -0700
Subject: [PATCH] KVM: x86/mmu: Do not apply HPA (memory encryption) mask to
GPAs
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks. The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".
For non-SEV guests, not dropping bits is the correct behavior. Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits. And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.
For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted. Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM. The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.
Fixes: d0ec49d4de90 ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable(a)vger.kernel.org
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210623230552.4027702-5-seanjc(a)google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 00732757cc60..b888385d1933 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -53,6 +53,8 @@
#include <asm/kvm_page_track.h>
#include "trace.h"
+#include "paging.h"
+
extern bool itlb_multihit_kvm_mitigation;
int __read_mostly nx_huge_pages = -1;
diff --git a/arch/x86/kvm/mmu/paging.h b/arch/x86/kvm/mmu/paging.h
new file mode 100644
index 000000000000..de8ab323bb70
--- /dev/null
+++ b/arch/x86/kvm/mmu/paging.h
@@ -0,0 +1,14 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Shadow paging constants/helpers that don't need to be #undef'd. */
+#ifndef __KVM_X86_PAGING_H
+#define __KVM_X86_PAGING_H
+
+#define GUEST_PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
+#define PT64_LVL_ADDR_MASK(level) \
+ (GUEST_PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+ (GUEST_PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#endif /* __KVM_X86_PAGING_H */
+
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
index 490a028ddabe..ee044d357b5f 100644
--- a/arch/x86/kvm/mmu/paging_tmpl.h
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -24,7 +24,7 @@
#define pt_element_t u64
#define guest_walker guest_walker64
#define FNAME(name) paging##64_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
@@ -57,7 +57,7 @@
#define pt_element_t u64
#define guest_walker guest_walkerEPT
#define FNAME(name) ept_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index 7a5ce9314107..eb7b227fc6cf 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -38,12 +38,6 @@ static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
-#define PT64_LVL_ADDR_MASK(level) \
- (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-#define PT64_LVL_OFFSET_MASK(level) \
- (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
The patch below does not apply to the 4.19-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From fc9bf2e087efcd81bda2e52d09616d2a1bf982a8 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Wed, 23 Jun 2021 16:05:49 -0700
Subject: [PATCH] KVM: x86/mmu: Do not apply HPA (memory encryption) mask to
GPAs
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks. The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".
For non-SEV guests, not dropping bits is the correct behavior. Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits. And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.
For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted. Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM. The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.
Fixes: d0ec49d4de90 ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable(a)vger.kernel.org
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210623230552.4027702-5-seanjc(a)google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 00732757cc60..b888385d1933 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -53,6 +53,8 @@
#include <asm/kvm_page_track.h>
#include "trace.h"
+#include "paging.h"
+
extern bool itlb_multihit_kvm_mitigation;
int __read_mostly nx_huge_pages = -1;
diff --git a/arch/x86/kvm/mmu/paging.h b/arch/x86/kvm/mmu/paging.h
new file mode 100644
index 000000000000..de8ab323bb70
--- /dev/null
+++ b/arch/x86/kvm/mmu/paging.h
@@ -0,0 +1,14 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Shadow paging constants/helpers that don't need to be #undef'd. */
+#ifndef __KVM_X86_PAGING_H
+#define __KVM_X86_PAGING_H
+
+#define GUEST_PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
+#define PT64_LVL_ADDR_MASK(level) \
+ (GUEST_PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+ (GUEST_PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#endif /* __KVM_X86_PAGING_H */
+
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
index 490a028ddabe..ee044d357b5f 100644
--- a/arch/x86/kvm/mmu/paging_tmpl.h
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -24,7 +24,7 @@
#define pt_element_t u64
#define guest_walker guest_walker64
#define FNAME(name) paging##64_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
@@ -57,7 +57,7 @@
#define pt_element_t u64
#define guest_walker guest_walkerEPT
#define FNAME(name) ept_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index 7a5ce9314107..eb7b227fc6cf 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -38,12 +38,6 @@ static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
-#define PT64_LVL_ADDR_MASK(level) \
- (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-#define PT64_LVL_OFFSET_MASK(level) \
- (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From fc9bf2e087efcd81bda2e52d09616d2a1bf982a8 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Wed, 23 Jun 2021 16:05:49 -0700
Subject: [PATCH] KVM: x86/mmu: Do not apply HPA (memory encryption) mask to
GPAs
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks. The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".
For non-SEV guests, not dropping bits is the correct behavior. Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits. And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.
For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted. Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM. The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.
Fixes: d0ec49d4de90 ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable(a)vger.kernel.org
Cc: Brijesh Singh <brijesh.singh(a)amd.com>
Cc: Tom Lendacky <thomas.lendacky(a)amd.com>
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210623230552.4027702-5-seanjc(a)google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 00732757cc60..b888385d1933 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -53,6 +53,8 @@
#include <asm/kvm_page_track.h>
#include "trace.h"
+#include "paging.h"
+
extern bool itlb_multihit_kvm_mitigation;
int __read_mostly nx_huge_pages = -1;
diff --git a/arch/x86/kvm/mmu/paging.h b/arch/x86/kvm/mmu/paging.h
new file mode 100644
index 000000000000..de8ab323bb70
--- /dev/null
+++ b/arch/x86/kvm/mmu/paging.h
@@ -0,0 +1,14 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Shadow paging constants/helpers that don't need to be #undef'd. */
+#ifndef __KVM_X86_PAGING_H
+#define __KVM_X86_PAGING_H
+
+#define GUEST_PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
+#define PT64_LVL_ADDR_MASK(level) \
+ (GUEST_PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+ (GUEST_PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#endif /* __KVM_X86_PAGING_H */
+
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
index 490a028ddabe..ee044d357b5f 100644
--- a/arch/x86/kvm/mmu/paging_tmpl.h
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -24,7 +24,7 @@
#define pt_element_t u64
#define guest_walker guest_walker64
#define FNAME(name) paging##64_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
@@ -57,7 +57,7 @@
#define pt_element_t u64
#define guest_walker guest_walkerEPT
#define FNAME(name) ept_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index 7a5ce9314107..eb7b227fc6cf 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -38,12 +38,6 @@ static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
-#define PT64_LVL_ADDR_MASK(level) \
- (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-#define PT64_LVL_OFFSET_MASK(level) \
- (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From e39f00f60ebd2e7b295c37a05e6349df656d3eb8 Mon Sep 17 00:00:00 2001
From: Sean Christopherson <seanjc(a)google.com>
Date: Wed, 23 Jun 2021 16:05:47 -0700
Subject: [PATCH] KVM: x86: Use kernel's x86_phys_bits to handle reduced
MAXPHYADDR
Use boot_cpu_data.x86_phys_bits instead of the raw CPUID information to
enumerate the MAXPHYADDR for KVM guests when TDP is disabled (the guest
version is only relevant to NPT/TDP).
When using shadow paging, any reductions to the host's MAXPHYADDR apply
to KVM and its guests as well, i.e. using the raw CPUID info will cause
KVM to misreport the number of PA bits available to the guest.
Unconditionally zero out the "Physical Address bit reduction" entry.
For !TDP, the adjustment is already done, and for TDP enumerating the
host's reduction is wrong as the reduction does not apply to GPAs.
Fixes: 9af9b94068fb ("x86/cpu/AMD: Handle SME reduction in physical address size")
Cc: stable(a)vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc(a)google.com>
Message-Id: <20210623230552.4027702-3-seanjc(a)google.com>
Signed-off-by: Paolo Bonzini <pbonzini(a)redhat.com>
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index 1a4217b3e185..ca7866d63e98 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -941,11 +941,18 @@ static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
unsigned phys_as = entry->eax & 0xff;
/*
- * Use bare metal's MAXPHADDR if the CPU doesn't report guest
- * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
- * guest version "applies only to guests using nested paging".
+ * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
+ * the guest operates in the same PA space as the host, i.e.
+ * reductions in MAXPHYADDR for memory encryption affect shadow
+ * paging, too.
+ *
+ * If TDP is enabled but an explicit guest MAXPHYADDR is not
+ * provided, use the raw bare metal MAXPHYADDR as reductions to
+ * the HPAs do not affect GPAs.
*/
- if (!g_phys_as || !tdp_enabled)
+ if (!tdp_enabled)
+ g_phys_as = boot_cpu_data.x86_phys_bits;
+ else if (!g_phys_as)
g_phys_as = phys_as;
entry->eax = g_phys_as | (virt_as << 8);
@@ -970,12 +977,18 @@ static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
case 0x8000001a:
case 0x8000001e:
break;
- /* Support memory encryption cpuid if host supports it */
case 0x8000001F:
- if (!kvm_cpu_cap_has(X86_FEATURE_SEV))
+ if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
- else
+ } else {
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
+
+ /*
+ * Enumerate '0' for "PA bits reduction", the adjusted
+ * MAXPHYADDR is enumerated directly (see 0x80000008).
+ */
+ entry->ebx &= ~GENMASK(11, 6);
+ }
break;
/*Add support for Centaur's CPUID instruction*/
case 0xC0000000: