Hello, Please consider backporting to 4.14.y the following commit from
kernel-net-next by Vlastimil Babka [CC'ed]:
d6a24df00638 ("mm, page_alloc: actually ignore mempolicies for high
priority allocations") It cherry-picks cleanly and builds fine.
The reason for the request is that the commit 1d26c112959f
<http://stash.eng.vyatta.net:7990/projects/VC/repos/linux-vyatta/commits/1d2…> ("mm,
page_alloc:do not break __GFP_THISNODE by zonelist reset") that was
previously backported to 4.14.y broke some of our functionality after we
upgraded from an earlier 4.14 kernel without the fix. The reason this is
happening is not clear, with this commit only found by bisect.
Fortunately the requested commit resolves the issue.
Best Regards,
Mike Manning
The patch below does not apply to the 4.14-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
>From 2e83ee1d8694a61d0d95a5b694f2e61e8dde8627 Mon Sep 17 00:00:00 2001
From: Peter Xu <peterx(a)redhat.com>
Date: Fri, 21 Dec 2018 14:30:50 -0800
Subject: [PATCH] mm: thp: fix flags for pmd migration when split
When splitting a huge migrating PMD, we'll transfer all the existing PMD
bits and apply them again onto the small PTEs. However we are fetching
the bits unconditionally via pmd_soft_dirty(), pmd_write() or
pmd_yound() while actually they don't make sense at all when it's a
migration entry. Fix them up. Since at it, drop the ifdef together as
not needed.
Note that if my understanding is correct about the problem then if
without the patch there is chance to lose some of the dirty bits in the
migrating pmd pages (on x86_64 we're fetching bit 11 which is part of
swap offset instead of bit 2) and it could potentially corrupt the
memory of an userspace program which depends on the dirty bit.
Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx(a)redhat.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov(a)yandex-team.ru>
Reviewed-by: William Kucharski <william.kucharski(a)oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov(a)linux.intel.com>
Cc: Andrea Arcangeli <aarcange(a)redhat.com>
Cc: Matthew Wilcox <willy(a)infradead.org>
Cc: Michal Hocko <mhocko(a)suse.com>
Cc: Dave Jiang <dave.jiang(a)intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar(a)linux.vnet.ibm.com>
Cc: Souptick Joarder <jrdr.linux(a)gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov(a)yandex-team.ru>
Cc: Zi Yan <zi.yan(a)cs.rutgers.edu>
Cc: <stable(a)vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds(a)linux-foundation.org>
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 5da55b38b1b7..e84a10b0d310 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -2144,23 +2144,25 @@ static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
*/
old_pmd = pmdp_invalidate(vma, haddr, pmd);
-#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration = is_pmd_migration_entry(old_pmd);
- if (pmd_migration) {
+ if (unlikely(pmd_migration)) {
swp_entry_t entry;
entry = pmd_to_swp_entry(old_pmd);
page = pfn_to_page(swp_offset(entry));
- } else
-#endif
+ write = is_write_migration_entry(entry);
+ young = false;
+ soft_dirty = pmd_swp_soft_dirty(old_pmd);
+ } else {
page = pmd_page(old_pmd);
+ if (pmd_dirty(old_pmd))
+ SetPageDirty(page);
+ write = pmd_write(old_pmd);
+ young = pmd_young(old_pmd);
+ soft_dirty = pmd_soft_dirty(old_pmd);
+ }
VM_BUG_ON_PAGE(!page_count(page), page);
page_ref_add(page, HPAGE_PMD_NR - 1);
- if (pmd_dirty(old_pmd))
- SetPageDirty(page);
- write = pmd_write(old_pmd);
- young = pmd_young(old_pmd);
- soft_dirty = pmd_soft_dirty(old_pmd);
/*
* Withdraw the table only after we mark the pmd entry invalid.
Please apply 071154499193 ("media: ov5640: Fix set format regression")
to 4.19.y.
The set_fmt operations updates the sensor format only when the image
format is changed and this patch fixes it.
Thank you,
adam
From: Michal Hocko <mhocko(a)suse.com>
Subject: memcg, oom: notify on oom killer invocation from the charge path
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore. The reason is that 29ef680ae7c2 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path. While doing so the notification was left behind in
mem_cgroup_oom_synchronize.
Fix the issue by replicating the oom hierarchy locking and the
notification.
Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7c2 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko(a)suse.com>
Reported-by: Burt Holzman <burt(a)fnal.gov>
Acked-by: Johannes Weiner <hannes(a)cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev(a)gmail.com
Cc: <stable(a)vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
--- a/mm/memcontrol.c~memcg-oom-notify-on-oom-killer-invocation-from-the-charge-path
+++ a/mm/memcontrol.c
@@ -1673,6 +1673,9 @@ enum oom_status {
static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
+ enum oom_status ret;
+ bool locked;
+
if (order > PAGE_ALLOC_COSTLY_ORDER)
return OOM_SKIPPED;
@@ -1707,10 +1710,23 @@ static enum oom_status mem_cgroup_oom(st
return OOM_ASYNC;
}
+ mem_cgroup_mark_under_oom(memcg);
+
+ locked = mem_cgroup_oom_trylock(memcg);
+
+ if (locked)
+ mem_cgroup_oom_notify(memcg);
+
+ mem_cgroup_unmark_under_oom(memcg);
if (mem_cgroup_out_of_memory(memcg, mask, order))
- return OOM_SUCCESS;
+ ret = OOM_SUCCESS;
+ else
+ ret = OOM_FAILED;
+
+ if (locked)
+ mem_cgroup_oom_unlock(memcg);
- return OOM_FAILED;
+ return ret;
}
/**
_
From: Huang Ying <ying.huang(a)intel.com>
Subject: mm, swap: fix swapoff with KSM pages
KSM pages may be mapped to the multiple VMAs that cannot be reached from
one anon_vma. So during swapin, a new copy of the page need to be
generated if a different anon_vma is needed, please refer to comments of
ksm_might_need_to_copy() for details.
During swapoff, unuse_vma() uses anon_vma (if available) to locate VMA and
virtual address mapped to the page, so not all mappings to a swapped out
KSM page could be found. So in try_to_unuse(), even if the swap count of
a swap entry isn't zero, the page needs to be deleted from swap cache, so
that, in the next round a new page could be allocated and swapin for the
other mappings of the swapped out KSM page.
But this contradicts with the THP swap support. Where the THP could be
deleted from swap cache only after the swap count of every swap entry in
the huge swap cluster backing the THP has reach 0. So try_to_unuse() is
changed in commit e07098294adf ("mm, THP, swap: support to reclaim swap
space for THP swapped out") to check that before delete a page from swap
cache, but this has broken KSM swapoff too.
Fortunately, KSM is for the normal pages only, so the original behavior
for KSM pages could be restored easily via checking PageTransCompound().
That is how this patch works.
The bug is introduced by e07098294adf ("mm, THP, swap: support to reclaim
swap space for THP swapped out"), which is merged by v4.14-rc1. So I
think we should backport the fix to from 4.14 on. But Hugh thinks it may
be rare for the KSM pages being in the swap device when swapoff, so nobody
reports the bug so far.
Link: http://lkml.kernel.org/r/20181226051522.28442-1-ying.huang@intel.com
Fixes: e07098294adf ("mm, THP, swap: support to reclaim swap space for THP swapped out")
Signed-off-by: "Huang, Ying" <ying.huang(a)intel.com>
Reported-by: Hugh Dickins <hughd(a)google.com>
Tested-by: Hugh Dickins <hughd(a)google.com>
Acked-by: Hugh Dickins <hughd(a)google.com>
Cc: Rik van Riel <riel(a)redhat.com>
Cc: Johannes Weiner <hannes(a)cmpxchg.org>
Cc: Minchan Kim <minchan(a)kernel.org>
Cc: Shaohua Li <shli(a)kernel.org>
Cc: Daniel Jordan <daniel.m.jordan(a)oracle.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
--- a/mm/swapfile.c~mm-swap-fix-swapoff-with-ksm-pages
+++ a/mm/swapfile.c
@@ -2197,7 +2197,8 @@ int try_to_unuse(unsigned int type, bool
*/
if (PageSwapCache(page) &&
likely(page_private(page) == entry.val) &&
- !page_swapped(page))
+ (!PageTransCompound(page) ||
+ !swap_page_trans_huge_swapped(si, entry)))
delete_from_swap_cache(compound_head(page));
/*
_
From: Mike Kravetz <mike.kravetz(a)oracle.com>
Subject: hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race. One obvious omission in the
current code is removing a page newly added to the page cache. This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations. To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out. There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv. Backing out a reservation may
require memory allocation which could fail so that needs to be taken into
account as well.
Instead of writing the required complicated code for this rare occurrence,
just eliminate the race. i_mmap_rwsem is now held in read mode for the
duration of page fault processing. Hold i_mmap_rwsem longer in truncation
and hold punch code to cover the call to remove_inode_hugepages.
With this modification, code in remove_inode_hugepages checking for races
becomes 'dead' as it can not longer happen. Remove the dead code and
expand comments to explain reasoning. Similarly, checks for races with
truncation in the page fault path can be simplified and removed.
[mike.kravetz(a)oracle.com: incorporat suggestions from Kirill]
Link: http://lkml.kernel.org/r/20181222223013.22193-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20181218223557.5202-3-mike.kravetz@oracle.com
Fixes: ebed4bfc8da8 ("hugetlb: fix absurd HugePages_Rsvd")
Signed-off-by: Mike Kravetz <mike.kravetz(a)oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov(a)linux.intel.com>
Cc: Michal Hocko <mhocko(a)kernel.org>
Cc: Hugh Dickins <hughd(a)google.com>
Cc: Naoya Horiguchi <n-horiguchi(a)ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar(a)linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange(a)redhat.com>
Cc: Davidlohr Bueso <dave(a)stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa(a)oracle.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
--- a/fs/hugetlbfs/inode.c~hugetlbfs-use-i_mmap_rwsem-to-fix-page-fault-truncate-race
+++ a/fs/hugetlbfs/inode.c
@@ -383,17 +383,16 @@ hugetlb_vmdelete_list(struct rb_root_cac
* truncation is indicated by end of range being LLONG_MAX
* In this case, we first scan the range and release found pages.
* After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
- * maps and global counts. Page faults can not race with truncation
- * in this routine. hugetlb_no_page() prevents page faults in the
- * truncated range. It checks i_size before allocation, and again after
- * with the page table lock for the page held. The same lock must be
- * acquired to unmap a page.
+ * maps and global counts.
* hole punch is indicated if end is not LLONG_MAX
* In the hole punch case we scan the range and release found pages.
* Only when releasing a page is the associated region/reserv map
* deleted. The region/reserv map for ranges without associated
- * pages are not modified. Page faults can race with hole punch.
- * This is indicated if we find a mapped page.
+ * pages are not modified.
+ *
+ * Callers of this routine must hold the i_mmap_rwsem in write mode to prevent
+ * races with page faults.
+ *
* Note: If the passed end of range value is beyond the end of file, but
* not LLONG_MAX this routine still performs a hole punch operation.
*/
@@ -423,32 +422,14 @@ static void remove_inode_hugepages(struc
for (i = 0; i < pagevec_count(&pvec); ++i) {
struct page *page = pvec.pages[i];
- u32 hash;
index = page->index;
- hash = hugetlb_fault_mutex_hash(h, current->mm,
- &pseudo_vma,
- mapping, index, 0);
- mutex_lock(&hugetlb_fault_mutex_table[hash]);
-
/*
- * If page is mapped, it was faulted in after being
- * unmapped in caller. Unmap (again) now after taking
- * the fault mutex. The mutex will prevent faults
- * until we finish removing the page.
- *
- * This race can only happen in the hole punch case.
- * Getting here in a truncate operation is a bug.
+ * A mapped page is impossible as callers should unmap
+ * all references before calling. And, i_mmap_rwsem
+ * prevents the creation of additional mappings.
*/
- if (unlikely(page_mapped(page))) {
- BUG_ON(truncate_op);
-
- i_mmap_lock_write(mapping);
- hugetlb_vmdelete_list(&mapping->i_mmap,
- index * pages_per_huge_page(h),
- (index + 1) * pages_per_huge_page(h));
- i_mmap_unlock_write(mapping);
- }
+ VM_BUG_ON(page_mapped(page));
lock_page(page);
/*
@@ -470,7 +451,6 @@ static void remove_inode_hugepages(struc
}
unlock_page(page);
- mutex_unlock(&hugetlb_fault_mutex_table[hash]);
}
huge_pagevec_release(&pvec);
cond_resched();
@@ -482,9 +462,20 @@ static void remove_inode_hugepages(struc
static void hugetlbfs_evict_inode(struct inode *inode)
{
+ struct address_space *mapping = inode->i_mapping;
struct resv_map *resv_map;
+ /*
+ * The vfs layer guarantees that there are no other users of this
+ * inode. Therefore, it would be safe to call remove_inode_hugepages
+ * without holding i_mmap_rwsem. We acquire and hold here to be
+ * consistent with other callers. Since there will be no contention
+ * on the semaphore, overhead is negligible.
+ */
+ i_mmap_lock_write(mapping);
remove_inode_hugepages(inode, 0, LLONG_MAX);
+ i_mmap_unlock_write(mapping);
+
resv_map = (struct resv_map *)inode->i_mapping->private_data;
/* root inode doesn't have the resv_map, so we should check it */
if (resv_map)
@@ -505,8 +496,8 @@ static int hugetlb_vmtruncate(struct ino
i_mmap_lock_write(mapping);
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
- i_mmap_unlock_write(mapping);
remove_inode_hugepages(inode, offset, LLONG_MAX);
+ i_mmap_unlock_write(mapping);
return 0;
}
@@ -540,8 +531,8 @@ static long hugetlbfs_punch_hole(struct
hugetlb_vmdelete_list(&mapping->i_mmap,
hole_start >> PAGE_SHIFT,
hole_end >> PAGE_SHIFT);
- i_mmap_unlock_write(mapping);
remove_inode_hugepages(inode, hole_start, hole_end);
+ i_mmap_unlock_write(mapping);
inode_unlock(inode);
}
@@ -624,7 +615,11 @@ static long hugetlbfs_fallocate(struct f
/* addr is the offset within the file (zero based) */
addr = index * hpage_size;
- /* mutex taken here, fault path and hole punch */
+ /*
+ * fault mutex taken here, protects against fault path
+ * and hole punch. inode_lock previously taken protects
+ * against truncation.
+ */
hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
index, addr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
--- a/mm/hugetlb.c~hugetlbfs-use-i_mmap_rwsem-to-fix-page-fault-truncate-race
+++ a/mm/hugetlb.c
@@ -3755,16 +3755,16 @@ static vm_fault_t hugetlb_no_page(struct
}
/*
- * Use page lock to guard against racing truncation
- * before we get page_table_lock.
+ * We can not race with truncation due to holding i_mmap_rwsem.
+ * Check once here for faults beyond end of file.
*/
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
+ if (idx >= size)
+ goto out;
+
retry:
page = find_lock_page(mapping, idx);
if (!page) {
- size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
- goto out;
-
/*
* Check for page in userfault range
*/
@@ -3854,9 +3854,6 @@ retry:
}
ptl = huge_pte_lock(h, mm, ptep);
- size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
- goto backout;
ret = 0;
if (!huge_pte_none(huge_ptep_get(ptep)))
@@ -3959,8 +3956,10 @@ vm_fault_t hugetlb_fault(struct mm_struc
/*
* Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
- * until finished with ptep. This prevents huge_pmd_unshare from
- * being called elsewhere and making the ptep no longer valid.
+ * until finished with ptep. This serves two purposes:
+ * 1) It prevents huge_pmd_unshare from being called elsewhere
+ * and making the ptep no longer valid.
+ * 2) It synchronizes us with file truncation.
*
* ptep could have already be assigned via huge_pte_offset. That
* is OK, as huge_pte_alloc will return the same value unless
_
From: Mike Kravetz <mike.kravetz(a)oracle.com>
Subject: hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with the
ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
called.
[mike.kravetz(a)oracle.com: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com
Fixes: 39dde65c9940 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz(a)oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov(a)linux.intel.com>
Cc: Michal Hocko <mhocko(a)kernel.org>
Cc: Hugh Dickins <hughd(a)google.com>
Cc: Naoya Horiguchi <n-horiguchi(a)ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar(a)linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange(a)redhat.com>
Cc: Davidlohr Bueso <dave(a)stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa(a)oracle.com>
Cc: Colin Ian King <colin.king(a)canonical.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
--- a/mm/hugetlb.c~hugetlbfs-use-i_mmap_rwsem-for-more-pmd-sharing-synchronization
+++ a/mm/hugetlb.c
@@ -3238,6 +3238,7 @@ int copy_hugetlb_page_range(struct mm_st
struct page *ptepage;
unsigned long addr;
int cow;
+ struct address_space *mapping = vma->vm_file->f_mapping;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
struct mmu_notifier_range range;
@@ -3249,13 +3250,23 @@ int copy_hugetlb_page_range(struct mm_st
mmu_notifier_range_init(&range, src, vma->vm_start,
vma->vm_end);
mmu_notifier_invalidate_range_start(&range);
+ } else {
+ /*
+ * For shared mappings i_mmap_rwsem must be held to call
+ * huge_pte_alloc, otherwise the returned ptep could go
+ * away if part of a shared pmd and another thread calls
+ * huge_pmd_unshare.
+ */
+ i_mmap_lock_read(mapping);
}
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
spinlock_t *src_ptl, *dst_ptl;
+
src_pte = huge_pte_offset(src, addr, sz);
if (!src_pte)
continue;
+
dst_pte = huge_pte_alloc(dst, addr, sz);
if (!dst_pte) {
ret = -ENOMEM;
@@ -3326,6 +3337,8 @@ int copy_hugetlb_page_range(struct mm_st
if (cow)
mmu_notifier_invalidate_range_end(&range);
+ else
+ i_mmap_unlock_read(mapping);
return ret;
}
@@ -3771,14 +3784,18 @@ retry:
};
/*
- * hugetlb_fault_mutex must be dropped before
- * handling userfault. Reacquire after handling
- * fault to make calling code simpler.
+ * hugetlb_fault_mutex and i_mmap_rwsem must be
+ * dropped before handling userfault. Reacquire
+ * after handling fault to make calling code simpler.
*/
hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
idx, haddr);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ i_mmap_unlock_read(mapping);
+
ret = handle_userfault(&vmf, VM_UFFD_MISSING);
+
+ i_mmap_lock_read(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
goto out;
}
@@ -3926,6 +3943,11 @@ vm_fault_t hugetlb_fault(struct mm_struc
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
if (ptep) {
+ /*
+ * Since we hold no locks, ptep could be stale. That is
+ * OK as we are only making decisions based on content and
+ * not actually modifying content here.
+ */
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) {
migration_entry_wait_huge(vma, mm, ptep);
@@ -3933,20 +3955,31 @@ vm_fault_t hugetlb_fault(struct mm_struc
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
- } else {
- ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
- if (!ptep)
- return VM_FAULT_OOM;
}
+ /*
+ * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
+ * until finished with ptep. This prevents huge_pmd_unshare from
+ * being called elsewhere and making the ptep no longer valid.
+ *
+ * ptep could have already be assigned via huge_pte_offset. That
+ * is OK, as huge_pte_alloc will return the same value unless
+ * something changed.
+ */
mapping = vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, vma, haddr);
+ i_mmap_lock_read(mapping);
+ ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
+ if (!ptep) {
+ i_mmap_unlock_read(mapping);
+ return VM_FAULT_OOM;
+ }
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
+ idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
@@ -4034,6 +4067,7 @@ out_ptl:
}
out_mutex:
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ i_mmap_unlock_read(mapping);
/*
* Generally it's safe to hold refcount during waiting page lock. But
* here we just wait to defer the next page fault to avoid busy loop and
@@ -4638,10 +4672,12 @@ void adjust_range_if_pmd_sharing_possibl
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
* and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the
- * code much cleaner. pmd allocation is essential for the shared case because
- * pud has to be populated inside the same i_mmap_rwsem section - otherwise
- * racing tasks could either miss the sharing (see huge_pte_offset) or select a
- * bad pmd for sharing.
+ * code much cleaner.
+ *
+ * This routine must be called with i_mmap_rwsem held in at least read mode.
+ * For hugetlbfs, this prevents removal of any page table entries associated
+ * with the address space. This is important as we are setting up sharing
+ * based on existing page table entries (mappings).
*/
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
@@ -4658,7 +4694,6 @@ pte_t *huge_pmd_share(struct mm_struct *
if (!vma_shareable(vma, addr))
return (pte_t *)pmd_alloc(mm, pud, addr);
- i_mmap_lock_write(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma)
continue;
@@ -4688,7 +4723,6 @@ pte_t *huge_pmd_share(struct mm_struct *
spin_unlock(ptl);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
- i_mmap_unlock_write(mapping);
return pte;
}
@@ -4699,7 +4733,7 @@ out:
* indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared.
*
- * called with page table lock held.
+ * Called with page table lock held and i_mmap_rwsem held in write mode.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user
--- a/mm/memory-failure.c~hugetlbfs-use-i_mmap_rwsem-for-more-pmd-sharing-synchronization
+++ a/mm/memory-failure.c
@@ -966,7 +966,7 @@ static bool hwpoison_user_mappings(struc
enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
struct address_space *mapping;
LIST_HEAD(tokill);
- bool unmap_success;
+ bool unmap_success = true;
int kill = 1, forcekill;
struct page *hpage = *hpagep;
bool mlocked = PageMlocked(hpage);
@@ -1028,7 +1028,19 @@ static bool hwpoison_user_mappings(struc
if (kill)
collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
- unmap_success = try_to_unmap(hpage, ttu);
+ if (!PageHuge(hpage)) {
+ unmap_success = try_to_unmap(hpage, ttu);
+ } else if (mapping) {
+ /*
+ * For hugetlb pages, try_to_unmap could potentially call
+ * huge_pmd_unshare. Because of this, take semaphore in
+ * write mode here and set TTU_RMAP_LOCKED to indicate we
+ * have taken the lock at this higer level.
+ */
+ i_mmap_lock_write(mapping);
+ unmap_success = try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
+ i_mmap_unlock_write(mapping);
+ }
if (!unmap_success)
pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
pfn, page_mapcount(hpage));
--- a/mm/migrate.c~hugetlbfs-use-i_mmap_rwsem-for-more-pmd-sharing-synchronization
+++ a/mm/migrate.c
@@ -1324,8 +1324,19 @@ static int unmap_and_move_huge_page(new_
goto put_anon;
if (page_mapped(hpage)) {
+ struct address_space *mapping = page_mapping(hpage);
+
+ /*
+ * try_to_unmap could potentially call huge_pmd_unshare.
+ * Because of this, take semaphore in write mode here and
+ * set TTU_RMAP_LOCKED to let lower levels know we have
+ * taken the lock.
+ */
+ i_mmap_lock_write(mapping);
try_to_unmap(hpage,
- TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
+ TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
+ TTU_RMAP_LOCKED);
+ i_mmap_unlock_write(mapping);
page_was_mapped = 1;
}
--- a/mm/rmap.c~hugetlbfs-use-i_mmap_rwsem-for-more-pmd-sharing-synchronization
+++ a/mm/rmap.c
@@ -25,6 +25,7 @@
* page->flags PG_locked (lock_page)
* hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
* mapping->i_mmap_rwsem
+ * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* anon_vma->rwsem
* mm->page_table_lock or pte_lock
* zone_lru_lock (in mark_page_accessed, isolate_lru_page)
@@ -1378,6 +1379,9 @@ static bool try_to_unmap_one(struct page
/*
* If sharing is possible, start and end will be adjusted
* accordingly.
+ *
+ * If called for a huge page, caller must hold i_mmap_rwsem
+ * in write mode as it is possible to call huge_pmd_unshare.
*/
adjust_range_if_pmd_sharing_possible(vma, &range.start,
&range.end);
--- a/mm/userfaultfd.c~hugetlbfs-use-i_mmap_rwsem-for-more-pmd-sharing-synchronization
+++ a/mm/userfaultfd.c
@@ -267,10 +267,14 @@ retry:
VM_BUG_ON(dst_addr & ~huge_page_mask(h));
/*
- * Serialize via hugetlb_fault_mutex
+ * Serialize via i_mmap_rwsem and hugetlb_fault_mutex.
+ * i_mmap_rwsem ensures the dst_pte remains valid even
+ * in the case of shared pmds. fault mutex prevents
+ * races with other faulting threads.
*/
- idx = linear_page_index(dst_vma, dst_addr);
mapping = dst_vma->vm_file->f_mapping;
+ i_mmap_lock_read(mapping);
+ idx = linear_page_index(dst_vma, dst_addr);
hash = hugetlb_fault_mutex_hash(h, dst_mm, dst_vma, mapping,
idx, dst_addr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
@@ -279,6 +283,7 @@ retry:
dst_pte = huge_pte_alloc(dst_mm, dst_addr, huge_page_size(h));
if (!dst_pte) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ i_mmap_unlock_read(mapping);
goto out_unlock;
}
@@ -286,6 +291,7 @@ retry:
dst_pteval = huge_ptep_get(dst_pte);
if (!huge_pte_none(dst_pteval)) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ i_mmap_unlock_read(mapping);
goto out_unlock;
}
@@ -293,6 +299,7 @@ retry:
dst_addr, src_addr, &page);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ i_mmap_unlock_read(mapping);
vm_alloc_shared = vm_shared;
cond_resched();
_
From: Michal Hocko <mhocko(a)suse.com>
Subject: hwpoison, memory_hotplug: allow hwpoisoned pages to be offlined
We have received a bug report that an injected MCE about faulty memory
prevents memory offline to succeed on 4.4 base kernel. The underlying
reason was that the HWPoison page has an elevated reference count and the
migration keeps failing. There are two problems with that. First of all
it is dubious to migrate the poisoned page because we know that accessing
that memory is possible to fail. Secondly it doesn't make any sense to
migrate a potentially broken content and preserve the memory corruption
over to a new location.
Oscar has found out that 4.4 and the current upstream kernels behave
slightly differently with his simply testcase
===
int main(void)
{
int ret;
int i;
int fd;
char *array = malloc(4096);
char *array_locked = malloc(4096);
fd = open("/tmp/data", O_RDONLY);
read(fd, array, 4095);
for (i = 0; i < 4096; i++)
array_locked[i] = 'd';
ret = mlock((void *)PAGE_ALIGN((unsigned long)array_locked), sizeof(array_locked));
if (ret)
perror("mlock");
sleep (20);
ret = madvise((void *)PAGE_ALIGN((unsigned long)array_locked), 4096, MADV_HWPOISON);
if (ret)
perror("madvise");
for (i = 0; i < 4096; i++)
array_locked[i] = 'd';
return 0;
}
===
+ offline this memory.
In 4.4 kernels he saw the hwpoisoned page to be returned back to the LRU
list
kernel: [<ffffffff81019ac9>] dump_trace+0x59/0x340
kernel: [<ffffffff81019e9a>] show_stack_log_lvl+0xea/0x170
kernel: [<ffffffff8101ac71>] show_stack+0x21/0x40
kernel: [<ffffffff8132bb90>] dump_stack+0x5c/0x7c
kernel: [<ffffffff810815a1>] warn_slowpath_common+0x81/0xb0
kernel: [<ffffffff811a275c>] __pagevec_lru_add_fn+0x14c/0x160
kernel: [<ffffffff811a2eed>] pagevec_lru_move_fn+0xad/0x100
kernel: [<ffffffff811a334c>] __lru_cache_add+0x6c/0xb0
kernel: [<ffffffff81195236>] add_to_page_cache_lru+0x46/0x70
kernel: [<ffffffffa02b4373>] extent_readpages+0xc3/0x1a0 [btrfs]
kernel: [<ffffffff811a16d7>] __do_page_cache_readahead+0x177/0x200
kernel: [<ffffffff811a18c8>] ondemand_readahead+0x168/0x2a0
kernel: [<ffffffff8119673f>] generic_file_read_iter+0x41f/0x660
kernel: [<ffffffff8120e50d>] __vfs_read+0xcd/0x140
kernel: [<ffffffff8120e9ea>] vfs_read+0x7a/0x120
kernel: [<ffffffff8121404b>] kernel_read+0x3b/0x50
kernel: [<ffffffff81215c80>] do_execveat_common.isra.29+0x490/0x6f0
kernel: [<ffffffff81215f08>] do_execve+0x28/0x30
kernel: [<ffffffff81095ddb>] call_usermodehelper_exec_async+0xfb/0x130
kernel: [<ffffffff8161c045>] ret_from_fork+0x55/0x80
And that latter confuses the hotremove path because an LRU page is
attempted to be migrated and that fails due to an elevated reference
count. It is quite possible that the reuse of the HWPoisoned page is some
kind of fixed race condition but I am not really sure about that.
With the upstream kernel the failure is slightly different. The page
doesn't seem to have LRU bit set but isolate_movable_page simply fails and
do_migrate_range simply puts all the isolated pages back to LRU and
therefore no progress is made and scan_movable_pages finds same set of
pages over and over again.
Fix both cases by explicitly checking HWPoisoned pages before we even try
to get reference on the page, try to unmap it if it is still mapped. As
explained by Naoya:
: Hwpoison code never unmapped those for no big reason because
: Ksm pages never dominate memory, so we simply didn't have strong
: motivation to save the pages.
Also put WARN_ON(PageLRU) in case there is a race and we can hit LRU
HWPoison pages which shouldn't happen but I couldn't convince myself about
that. Naoya has noted the following:
: Theoretically no such gurantee, because try_to_unmap() doesn't have a
: guarantee of success and then memory_failure() returns immediately
: when hwpoison_user_mappings fails.
: Or the following code (comes after hwpoison_user_mappings block) also impli=
: es
: that the target page can still have PageLRU flag.
:
: /*
: * Torn down by someone else?
: */
: if (PageLRU(p) && !PageSwapCache(p) && p->mapping =3D=3D NULL) {
: action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
: res =3D -EBUSY;
: goto out;
: }
:
: So I think it's OK to keep "if (WARN_ON(PageLRU(page)))" block in
: current version of your patch.
Link: http://lkml.kernel.org/r/20181206120135.14079-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko(a)suse.com>
Reviewed-by: Oscar Salvador <osalvador(a)suse.com>
Debugged-by: Oscar Salvador <osalvador(a)suse.com>
Tested-by: Oscar Salvador <osalvador(a)suse.com>
Acked-by: David Hildenbrand <david(a)redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi(a)ah.jp.nec.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
--- a/mm/memory_hotplug.c~hwpoison-memory_hotplug-allow-hwpoisoned-pages-to-be-offlined
+++ a/mm/memory_hotplug.c
@@ -34,6 +34,7 @@
#include <linux/hugetlb.h>
#include <linux/memblock.h>
#include <linux/compaction.h>
+#include <linux/rmap.h>
#include <asm/tlbflush.h>
@@ -1368,6 +1369,21 @@ do_migrate_range(unsigned long start_pfn
pfn = page_to_pfn(compound_head(page))
+ hpage_nr_pages(page) - 1;
+ /*
+ * HWPoison pages have elevated reference counts so the migration would
+ * fail on them. It also doesn't make any sense to migrate them in the
+ * first place. Still try to unmap such a page in case it is still mapped
+ * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
+ * the unmap as the catch all safety net).
+ */
+ if (PageHWPoison(page)) {
+ if (WARN_ON(PageLRU(page)))
+ isolate_lru_page(page);
+ if (page_mapped(page))
+ try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
+ continue;
+ }
+
if (!get_page_unless_zero(page))
continue;
/*
_
From: Dan Williams <dan.j.williams(a)intel.com>
Subject: mm, hmm: mark hmm_devmem_{add, add_resource} EXPORT_SYMBOL_GPL
At Maintainer Summit, Greg brought up a topic I proposed around
EXPORT_SYMBOL_GPL usage. The motivation was considerations for when
EXPORT_SYMBOL_GPL is warranted and the criteria for taking the exceptional
step of reclassifying an existing export. Specifically, I wanted to make
the case that although the line is fuzzy and hard to specify in abstract
terms, it is nonetheless clear that devm_memremap_pages() and HMM
(Heterogeneous Memory Management) have crossed it. The
devm_memremap_pages() facility should have been EXPORT_SYMBOL_GPL from the
beginning, and HMM as a derivative of that functionality should have
naturally picked up that designation as well.
Contrary to typical rules, the HMM infrastructure was merged upstream with
zero in-tree consumers. There was a promise at the time that those users
would be merged "soon", but it has been over a year with no drivers
arriving. While the Nouveau driver is about to belatedly make good on
that promise it is clear that HMM was targeted first and foremost at an
out-of-tree consumer.
HMM is derived from devm_memremap_pages(), a facility Christoph and I
spearheaded to support persistent memory. It combines a device lifetime
model with a dynamically created 'struct page' / memmap array for any
physical address range. It enables coordination and control of the many
code paths in the kernel built to interact with memory via 'struct page'
objects. With HMM the integration goes even deeper by allowing device
drivers to hook and manipulate page fault and page free events.
One interpretation of when EXPORT_SYMBOL is suitable is when it is
exporting stable and generic leaf functionality. The
devm_memremap_pages() facility continues to see expanding use cases,
peer-to-peer DMA being the most recent, with no clear end date when it
will stop attracting reworks and semantic changes. It is not suitable to
export devm_memremap_pages() as a stable 3rd party driver API due to the
fact that it is still changing and manipulates core behavior. Moreover,
it is not in the best interest of the long term development of the core
memory management subsystem to permit any external driver to effectively
define its own system-wide memory management policies with no
encouragement to engage with upstream.
I am also concerned that HMM was designed in a way to minimize further
engagement with the core-MM. That, with these hooks in place,
device-drivers are free to implement their own policies without much
consideration for whether and how the core-MM could grow to meet that
need. Going forward not only should HMM be EXPORT_SYMBOL_GPL, but the
core-MM should be allowed the opportunity and stimulus to change and
address these new use cases as first class functionality.
Original changelog:
hmm_devmem_add(), and hmm_devmem_add_resource() duplicated
devm_memremap_pages() and are now simple now wrappers around the core
facility to inject a dev_pagemap instance into the global pgmap_radix and
hook page-idle events. The devm_memremap_pages() interface is base
infrastructure for HMM. HMM has more and deeper ties into the kernel
memory management implementation than base ZONE_DEVICE which is itself a
EXPORT_SYMBOL_GPL facility.
Originally, the HMM page structure creation routines copied the
devm_memremap_pages() code and reused ZONE_DEVICE. A cleanup to unify the
implementations was discussed during the initial review:
http://lkml.iu.edu/hypermail/linux/kernel/1701.2/00812.html Recent work to
extend devm_memremap_pages() for the peer-to-peer-DMA facility enabled
this cleanup to move forward.
In addition to the integration with devm_memremap_pages() HMM depends on
other GPL-only symbols:
mmu_notifier_unregister_no_release
percpu_ref
region_intersects
__class_create
It goes further to consume / indirectly expose functionality that is not
exported to any other driver:
alloc_pages_vma
walk_page_range
HMM is derived from devm_memremap_pages(), and extends deep core-kernel
fundamentals. Similar to devm_memremap_pages(), mark its entry points
EXPORT_SYMBOL_GPL().
[logang(a)deltatee.com: PCI/P2PDMA: match interface changes to devm_memremap_pages()]
Link: http://lkml.kernel.org/r/20181130225911.2900-1-logang@deltatee.com
Link: http://lkml.kernel.org/r/154275560565.76910.15919297436557795278.stgit@dwil…
Signed-off-by: Dan Williams <dan.j.williams(a)intel.com>
Signed-off-by: Logan Gunthorpe <logang(a)deltatee.com>
Reviewed-by: Christoph Hellwig <hch(a)lst.de>
Cc: Logan Gunthorpe <logang(a)deltatee.com>
Cc: "Jérôme Glisse" <jglisse(a)redhat.com>
Cc: Balbir Singh <bsingharora(a)gmail.com>,
Cc: Michal Hocko <mhocko(a)suse.com>
Cc: Linus Torvalds <torvalds(a)linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh(a)kernel.crashing.org>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
--- a/drivers/pci/p2pdma.c~mm-hmm-mark-hmm_devmem_add-add_resource-export_symbol_gpl
+++ a/drivers/pci/p2pdma.c
@@ -82,10 +82,8 @@ static void pci_p2pdma_percpu_release(st
complete_all(&p2p->devmap_ref_done);
}
-static void pci_p2pdma_percpu_kill(void *data)
+static void pci_p2pdma_percpu_kill(struct percpu_ref *ref)
{
- struct percpu_ref *ref = data;
-
/*
* pci_p2pdma_add_resource() may be called multiple times
* by a driver and may register the percpu_kill devm action multiple
@@ -198,6 +196,7 @@ int pci_p2pdma_add_resource(struct pci_d
pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
pci_resource_start(pdev, bar);
+ pgmap->kill = pci_p2pdma_percpu_kill;
addr = devm_memremap_pages(&pdev->dev, pgmap);
if (IS_ERR(addr)) {
@@ -211,11 +210,6 @@ int pci_p2pdma_add_resource(struct pci_d
if (error)
goto pgmap_free;
- error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_percpu_kill,
- &pdev->p2pdma->devmap_ref);
- if (error)
- goto pgmap_free;
-
pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
&pgmap->res);
--- a/mm/hmm.c~mm-hmm-mark-hmm_devmem_add-add_resource-export_symbol_gpl
+++ a/mm/hmm.c
@@ -1110,7 +1110,7 @@ struct hmm_devmem *hmm_devmem_add(const
return result;
return devmem;
}
-EXPORT_SYMBOL(hmm_devmem_add);
+EXPORT_SYMBOL_GPL(hmm_devmem_add);
struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
struct device *device,
@@ -1164,7 +1164,7 @@ struct hmm_devmem *hmm_devmem_add_resour
return result;
return devmem;
}
-EXPORT_SYMBOL(hmm_devmem_add_resource);
+EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
/*
* A device driver that wants to handle multiple devices memory through a
_