On Sun, Nov 19, 2023 at 12:03 AM Akihiko Odaki akihiko.odaki@daynix.com wrote:
[...]
Unfortunately no. The communication with the userspace can be done with two different means:
- usual socket read/write
- vhost for direct interaction with a KVM guest
The BPF map may be a valid option for socket read/write, but it is not for vhost. In-kernel vhost may fetch hash from the BPF map, but I guess it's not a standard way to have an interaction between the kernel code and a BPF program.
I am very new to areas like vhost and KVM. So I don't really follow. Does this mean we have the guest kernel reading data from host eBPF programs (loaded by Qemu)?
Unfortunately, however, it is not acceptable for the BPF subsystem because the "stable" BPF is completely fixed these days. The "unstable/kfunc" BPF is an alternative, but the eBPF program will be shipped with a portable userspace program (QEMU)[1] so the lack of interface stability is not tolerable.
bpf kfuncs are as stable as exported symbols. Is exported symbols like stability enough for the use case? (I would assume yes.)
Another option is to hardcode the algorithm that was conventionally implemented with eBPF steering program in the kernel[2]. It is possible because the algorithm strictly follows the virtio-net specification[3]. However, there are proposals to add different algorithms to the specification[4], and hardcoding the algorithm to the kernel will require to add more UAPIs and code each time such a specification change happens, which is not good for tuntap.
The requirement looks similar to hid-bpf. Could you explain why that model is not enough? HID also requires some stability AFAICT.
I have little knowledge with hid-bpf, but I assume it is more like a "safe" kernel module; in my understanding, it affects the system state and is intended to be loaded with some kind of a system daemon. It is fine to have the same lifecycle with the kernel for such a BPF program; whenever the kernel is updated, the distributor can recompile the BPF program with the new kernel headers and ship it along with the kernel just as like a kernel module.
In contrast, our intended use case is more like a normal application. So, for example, a user may download a container and run QEMU (including the BPF program) installed in the container. As such, it is nice if the ABI is stable across kernel releases, but it is not guaranteed for kfuncs. Such a use case is already covered with the eBPF steering program so I want to maintain it if possible.
TBH, I don't think stability should be a concern for kfuncs used by QEMU. Many core BPF APIs are now implemented as kfuncs: bpf_dynptr_*, bpf_rcu_*, etc. As long as there are valid use cases,these kfuncs will be supported.
Thanks, Song