On Tue, Feb 20, 2024 at 7:43 PM Binbin Wu binbin.wu@linux.intel.com wrote:
On 12/13/2023 4:46 AM, Sagi Shahar wrote:
From: Ackerley Tng ackerleytng@google.com
One-to-one GVA to GPA mappings can be used in the guest to set up boot sequences during which paging is enabled, hence requiring a transition from using physical to virtual addresses in consecutive instructions.
Signed-off-by: Ackerley Tng ackerleytng@google.com Signed-off-by: Ryan Afranji afranji@google.com Signed-off-by: Sagi Shahar sagis@google.com
.../selftests/kvm/include/kvm_util_base.h | 2 + tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++--- 2 files changed, 55 insertions(+), 10 deletions(-)
diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h index 1426e88ebdc7..c2e5c5f25dfc 100644 --- a/tools/testing/selftests/kvm/include/kvm_util_base.h +++ b/tools/testing/selftests/kvm/include/kvm_util_base.h @@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type); vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type);vm_vaddr_t vaddr_min, uint32_t data_memslot);
diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c index febc63d7a46b..4f1ae0f1eef0 100644 --- a/tools/testing/selftests/kvm/lib/kvm_util.c +++ b/tools/testing/selftests/kvm/lib/kvm_util.c @@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, return pgidx_start * vm->page_size; }
+/*
- VM Virtual Address Allocate Shared/Encrypted
- Input Args:
- vm - Virtual Machine
- sz - Size in bytes
- vaddr_min - Minimum starting virtual address
- paddr_min - Minimum starting physical address
- data_memslot - memslot number to allocate in
- encrypt - Whether the region should be handled as encrypted
- Output Args: None
- Return:
- Starting guest virtual address
- Allocates at least sz bytes within the virtual address space of the vm
- given by vm. The allocated bytes are mapped to a virtual address >=
- the address given by vaddr_min. Note that each allocation uses a
- a unique set of pages, with the minimum real allocation being at least
- a page.
- */ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type,
bool encrypt)
vm_vaddr_t vaddr_min, vm_paddr_t paddr_min,
uint32_t data_memslot, bool encrypt)
{ uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
virt_pgd_alloc(vm);
vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages,
KVM_UTIL_MIN_PFN * vm->page_size,
vm->memslots[type], encrypt);
vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min,
data_memslot, encrypt); /* * Find an unused range of virtual page addresses of at least
@@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
/* Map the virtual pages. */ for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
pages--, vaddr += vm->page_size, paddr += vm->page_size) {
pages--, vaddr += vm->page_size, paddr += vm->page_size) { virt_pg_map(vm, vaddr, paddr); sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
@@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type) {
return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected);
return ____vm_vaddr_alloc(vm, sz, vaddr_min,
KVM_UTIL_MIN_PFN * vm->page_size,
vm->memslots[type], vm->protected);
}
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) {
return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false);
return ____vm_vaddr_alloc(vm, sz, vaddr_min,
KVM_UTIL_MIN_PFN * vm->page_size,
vm->memslots[MEM_REGION_TEST_DATA], false);
}
/*
@@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); }
+/**
- Allocate memory in @vm of size @sz in memslot with id @data_memslot,
- beginning with the desired address of @vaddr_min.
- If there isn't enough memory at @vaddr_min, find the next possible address
- that can meet the requested size in the given memslot.
- Return the address where the memory is allocated.
- */
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
vm_vaddr_t vaddr_min, uint32_t data_memslot)
+{
vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min,
(vm_paddr_t)vaddr_min, data_memslot,
vm->protected);
TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva));
How can this be guaranteed? For ____vm_vaddr_alloc(), generically there is no enforcement about the identity of virtual and physical address.
The problem is that if the allocation won't be 1-to-1 the tests won't work. So we figured it's better to fail early. The way this is used in practice generally guarantees that the mapping can be 1-to-1 since we create these mappings at an early stage.
return gva;
+}
- /*
- VM Virtual Address Allocate Pages