On 2023/12/6 15:36, Yosry Ahmed wrote:
On Tue, Dec 5, 2023 at 10:43 PM Chengming Zhou chengming.zhou@linux.dev wrote:
On 2023/12/6 13:59, Yosry Ahmed wrote:
[..]
@@ -526,6 +582,102 @@ static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, return entry; }
+/********************************* +* shrinker functions +**********************************/ +static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
spinlock_t *lock, void *arg);
+static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
struct shrink_control *sc)
+{
struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
unsigned long shrink_ret, nr_protected, lru_size;
struct zswap_pool *pool = shrinker->private_data;
bool encountered_page_in_swapcache = false;
nr_protected =
atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
lru_size = list_lru_shrink_count(&pool->list_lru, sc);
/*
* Abort if the shrinker is disabled or if we are shrinking into the
* protected region.
*
* This short-circuiting is necessary because if we have too many multiple
* concurrent reclaimers getting the freeable zswap object counts at the
* same time (before any of them made reasonable progress), the total
* number of reclaimed objects might be more than the number of unprotected
* objects (i.e the reclaimers will reclaim into the protected area of the
* zswap LRU).
*/
if (!zswap_shrinker_enabled || nr_protected >= lru_size - sc->nr_to_scan) {
sc->nr_scanned = 0;
return SHRINK_STOP;
}
shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
&encountered_page_in_swapcache);
if (encountered_page_in_swapcache)
return SHRINK_STOP;
return shrink_ret ? shrink_ret : SHRINK_STOP;
+}
+static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
struct shrink_control *sc)
+{
struct zswap_pool *pool = shrinker->private_data;
struct mem_cgroup *memcg = sc->memcg;
struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
+#ifdef CONFIG_MEMCG_KMEM
cgroup_rstat_flush(memcg->css.cgroup);
nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
+#else
/* use pool stats instead of memcg stats */
nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
nr_stored = atomic_read(&pool->nr_stored);
+#endif
if (!zswap_shrinker_enabled || !nr_stored)
When I tested with this series, with !zswap_shrinker_enabled in the default case, I found the performance is much worse than that without this patch.
Testcase: memory.max=2G, zswap enabled, kernel build -j32 in a tmpfs directory.
The reason seems the above cgroup_rstat_flush(), caused much rstat lock contention to the zswap_store() path. And if I put the "zswap_shrinker_enabled" check above the cgroup_rstat_flush(), the performance become much better.
Maybe we can put the "zswap_shrinker_enabled" check above cgroup_rstat_flush()?
Yes, we should do nothing if !zswap_shrinker_enabled. We should also use mem_cgroup_flush_stats() here like other places unless accuracy is crucial, which I doubt given that reclaim uses mem_cgroup_flush_stats().
Yes. After changing to use mem_cgroup_flush_stats() here, the performance become much better.
mem_cgroup_flush_stats() has some thresholding to make sure we don't do flushes unnecessarily, and I have a pending series in mm-unstable that makes that thresholding per-memcg. Keep in mind that adding a call to mem_cgroup_flush_stats() will cause a conflict in mm-unstable,
My test branch is linux-next 20231205, and it's all good after changing to use mem_cgroup_flush_stats(memcg).
Thanks for reporting back. We should still move the zswap_shrinker_enabled check ahead, no need to even call mem_cgroup_flush_stats() if we will do nothing anyway.
Yes, agree!