On 17.02.25 23:05, Zi Yan wrote:
On 17 Feb 2025, at 16:44, David Hildenbrand wrote:
On 11.02.25 16:50, Zi Yan wrote:
It is a preparation patch for non-uniform folio split, which always split a folio into half iteratively, and minimal xarray entry split.
Currently, xas_split_alloc() and xas_split() always split all slots from a multi-index entry. They cost the same number of xa_node as the to-be-split slots. For example, to split an order-9 entry, which takes 2^(9-6)=8 slots, assuming XA_CHUNK_SHIFT is 6 (!CONFIG_BASE_SMALL), 8 xa_node are needed. Instead xas_try_split() is intended to be used iteratively to split the order-9 entry into 2 order-8 entries, then split one order-8 entry, based on the given index, to 2 order-7 entries, ..., and split one order-1 entry to 2 order-0 entries. When splitting the order-6 entry and a new xa_node is needed, xas_try_split() will try to allocate one if possible. As a result, xas_try_split() would only need one xa_node instead of 8.
When a new xa_node is needed during the split, xas_try_split() can try to allocate one but no more. -ENOMEM will be return if a node cannot be allocated. -EINVAL will be return if a sibling node is split or cascade split happens, where two or more new nodes are needed, and these are not supported by xas_try_split().
xas_split_alloc() and xas_split() split an order-9 to order-0:
--------------------------------- | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | | | | --------------------------------- | | | | ------- --- --- ------- | | ... | | V V V V
| xa_node | | xa_node | ... | xa_node | | xa_node |
xas_try_split() splits an order-9 to order-0:
| | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | | | | --------------------------------- | | V
| xa_node |
Signed-off-by: Zi Yan ziy@nvidia.com
Documentation/core-api/xarray.rst | 14 ++- include/linux/xarray.h | 7 ++ lib/test_xarray.c | 47 +++++++++++ lib/xarray.c | 136 ++++++++++++++++++++++++++---- tools/testing/radix-tree/Makefile | 1 + 5 files changed, 188 insertions(+), 17 deletions(-)
diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst index f6a3eef4fe7f..c6c91cbd0c3c 100644 --- a/Documentation/core-api/xarray.rst +++ b/Documentation/core-api/xarray.rst @@ -489,7 +489,19 @@ Storing ``NULL`` into any index of a multi-index entry will set the entry at every index to ``NULL`` and dissolve the tie. A multi-index entry can be split into entries occupying smaller ranges by calling xas_split_alloc() without the xa_lock held, followed by taking the lock -and calling xas_split(). +and calling xas_split() or calling xas_try_split() with xa_lock. The +difference between xas_split_alloc()+xas_split() and xas_try_alloc() is +that xas_split_alloc() + xas_split() split the entry from the original +order to the new order in one shot uniformly, whereas xas_try_split() +iteratively splits the entry containing the index non-uniformly. +For example, to split an order-9 entry, which takes 2^(9-6)=8 slots, +assuming ``XA_CHUNK_SHIFT`` is 6, xas_split_alloc() + xas_split() need +8 xa_node. xas_try_split() splits the order-9 entry into +2 order-8 entries, then split one order-8 entry, based on the given index, +to 2 order-7 entries, ..., and split one order-1 entry to 2 order-0 entries. +When splitting the order-6 entry and a new xa_node is needed, xas_try_split() +will try to allocate one if possible. As a result, xas_try_split() would only +need 1 xa_node instead of 8. Functions and structures ======================== diff --git a/include/linux/xarray.h b/include/linux/xarray.h index 0b618ec04115..9eb8c7425090 100644 --- a/include/linux/xarray.h +++ b/include/linux/xarray.h @@ -1555,6 +1555,8 @@ int xa_get_order(struct xarray *, unsigned long index); int xas_get_order(struct xa_state *xas); void xas_split(struct xa_state *, void *entry, unsigned int order); void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t); +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order,
#else static inline int xa_get_order(struct xarray *xa, unsigned long index) {gfp_t gfp);
@@ -1576,6 +1578,11 @@ static inline void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, gfp_t gfp) { }
+static inline void xas_try_split(struct xa_state *xas, void *entry,
unsigned int order, gfp_t gfp)
+{ +} #endif /** diff --git a/lib/test_xarray.c b/lib/test_xarray.c index 6932a26f4927..598ca38a2f5b 100644 --- a/lib/test_xarray.c +++ b/lib/test_xarray.c @@ -1857,6 +1857,49 @@ static void check_split_1(struct xarray *xa, unsigned long index, xa_destroy(xa); } +static void check_split_2(struct xarray *xa, unsigned long index,
unsigned int order, unsigned int new_order)
+{
- XA_STATE_ORDER(xas, xa, index, new_order);
- unsigned int i, found;
- void *entry;
- xa_store_order(xa, index, order, xa, GFP_KERNEL);
- xa_set_mark(xa, index, XA_MARK_1);
- xas_lock(&xas);
- xas_try_halve(&xas, xa, order, GFP_KERNEL);
- if (((new_order / XA_CHUNK_SHIFT) < (order / XA_CHUNK_SHIFT)) &&
new_order < order - 1) {
XA_BUG_ON(xa, !xas_error(&xas) || xas_error(&xas) != -EINVAL);
xas_unlock(&xas);
goto out;
- }
- for (i = 0; i < (1 << order); i += (1 << new_order))
__xa_store(xa, index + i, xa_mk_index(index + i), 0);
- xas_unlock(&xas);
- for (i = 0; i < (1 << order); i++) {
unsigned int val = index + (i & ~((1 << new_order) - 1));
XA_BUG_ON(xa, xa_load(xa, index + i) != xa_mk_index(val));
- }
- xa_set_mark(xa, index, XA_MARK_0);
- XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0));
- xas_set_order(&xas, index, 0);
- found = 0;
- rcu_read_lock();
- xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_1) {
found++;
XA_BUG_ON(xa, xa_is_internal(entry));
- }
- rcu_read_unlock();
- XA_BUG_ON(xa, found != 1 << (order - new_order));
+out:
- xa_destroy(xa);
+}
- static noinline void check_split(struct xarray *xa) { unsigned int order, new_order;
@@ -1868,6 +1911,10 @@ static noinline void check_split(struct xarray *xa) check_split_1(xa, 0, order, new_order); check_split_1(xa, 1UL << order, order, new_order); check_split_1(xa, 3UL << order, order, new_order);
check_split_2(xa, 0, order, new_order);
check_split_2(xa, 1UL << order, order, new_order);
} }check_split_2(xa, 3UL << order, order, new_order); }
diff --git a/lib/xarray.c b/lib/xarray.c index 116e9286c64e..c38beca77830 100644 --- a/lib/xarray.c +++ b/lib/xarray.c @@ -1007,6 +1007,31 @@ static void node_set_marks(struct xa_node *node, unsigned int offset, } } +static struct xa_node *__xas_alloc_node_for_split(struct xa_state *xas,
void *entry, gfp_t gfp)
+{
- unsigned int i;
- void *sibling = NULL;
- struct xa_node *node;
- unsigned int mask = xas->xa_sibs;
- node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
- if (!node)
return NULL;
- node->array = xas->xa;
- for (i = 0; i < XA_CHUNK_SIZE; i++) {
if ((i & mask) == 0) {
RCU_INIT_POINTER(node->slots[i], entry);
sibling = xa_mk_sibling(i);
} else {
RCU_INIT_POINTER(node->slots[i], sibling);
}
- }
- RCU_INIT_POINTER(node->parent, xas->xa_alloc);
- return node;
+}
- /**
- xas_split_alloc() - Allocate memory for splitting an entry.
- @xas: XArray operation state.
@@ -1025,7 +1050,6 @@ void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, gfp_t gfp) { unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
- unsigned int mask = xas->xa_sibs; /* XXX: no support for splitting really large entries yet */ if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order))
@@ -1034,23 +1058,9 @@ void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, return; do {
unsigned int i;
void *sibling = NULL;
struct xa_node *node;
node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
struct xa_node *node = __xas_alloc_node_for_split(xas, entry, gfp); if (!node) goto nomem;
node->array = xas->xa;
for (i = 0; i < XA_CHUNK_SIZE; i++) {
if ((i & mask) == 0) {
RCU_INIT_POINTER(node->slots[i], entry);
sibling = xa_mk_sibling(i);
} else {
RCU_INIT_POINTER(node->slots[i], sibling);
}
}
} while (sibs-- > 0); @@ -1122,6 +1132,100 @@ void xas_split(struct xa_state *xas, void *entry, unsigned int order) xas_update(xas, node); } EXPORT_SYMBOL_GPL(xas_split);RCU_INIT_POINTER(node->parent, xas->xa_alloc); xas->xa_alloc = node;
+/**
- xas_try_split() - Try to split a multi-index entry.
- @xas: XArray operation state.
- @entry: New entry to store in the array.
- @order: Current entry order.
- @gfp: Memory allocation flags.
- The size of the new entries is set in @xas. The value in @entry is
- copied to all the replacement entries. If and only if one xa_node needs to
- be allocated, the function will use @gfp to get one. If more xa_node are
- needed, the function gives EINVAL error.
- Context: Any context. The caller should hold the xa_lock.
- */
+void xas_try_split(struct xa_state *xas, void *entry, unsigned int order,
gfp_t gfp)
+{
- unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
- unsigned int offset, marks;
- struct xa_node *node;
- void *curr = xas_load(xas);
- int values = 0;
- node = xas->xa_node;
- if (xas_top(node))
return;
- if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
gfp |= __GFP_ACCOUNT;
- marks = node_get_marks(node, xas->xa_offset);
- offset = xas->xa_offset + sibs;
- do {
if (xas->xa_shift < node->shift) {
struct xa_node *child = xas->xa_alloc;
unsigned int expected_sibs =
(1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1;
/*
* No support for splitting sibling entries
* (horizontally) or cascade split (vertically), which
* requires two or more new xa_nodes.
* Since if one xa_node allocation fails,
* it is hard to free the prior allocations.
*/
if (sibs || xas->xa_sibs != expected_sibs) {
xas_destroy(xas);
xas_set_err(xas, -EINVAL);
return;
}
if (!child) {
child = __xas_alloc_node_for_split(xas, entry,
gfp);
if (!child) {
xas_destroy(xas);
xas_set_err(xas, -ENOMEM);
return;
}
}
No expert on this, just wondering ...
... what is the effect if we halfway-through fail the split? Is it okay to leave that "partially split" thing in place? Can callers deal with that?
Good question.
Let me rephrase: In __split_unmapped_folio(), we call xas_try_split(). If that fails, we stop the split and effectively skip over the __split_folio_to_order(). The folio remains unsplit (no order change: old_order).
xas_try_split() was instructed to split from old_order -> split_order.
xas_try_split() documents that: "The value in @entry is copied to all the replacement entries.", meaning after the split, all entries will be pointing at the folio.
Now, can it happen that xas_try_split() would ever perform a partial split in any way, when invoked from __split_unmapped_folio(), such that we run into the do { } while(); loop and fail with -ENOMEM after already having performed changes -- xas_update().
Or is that simply impossible?
Maybe it's just the do { } while(); loop in there that is confusing me. (again, no expert)
xas_try_split() imposes what kind of split it does and is usually used to split from order N to order N-1:
You mean that old_order -> split_order will in the case of __split_unmapped_folio() always be a difference of 1?
- when N is a multiplier of XA_CHUNK_SHIFT, a new xa_node is needed, so
either child (namely xas->xa_alloc) is not NULL, meaning someone called xa_nomem() to allocate a xa_node before xas_try_split() or child is NULL and an allocation is needed. If child is still NULL after the allocation, meaning we are out of memory, no split is done;
- when N is not, no new xa_node is needed, xas_try_split() just rewrites
existing slot values to perform the split (the code after the hunk above). No fail will happen. For this split, since no new xa_node is needed, the caller is actually allowed to split from N to a value smaller than N-1 as long as N-1 is >= (N - N % XA_CHUNK_SHIFT).
Various checks make sure xas_try_split() only sees the two above situation:
a. "xas->xa_shift < node->shift" means the split crosses XA_CHUNK_SHIFT, at least 1 new xa_node is needed; the else branch only handles the case 2 above;
b. for the then branch the "if (sibs || xas->xa_sibs != expected_sibs)" check makes sure N is a multiplier of XA_CHUNK_SHIFT and the new order has to be N-1. In "if (sibs || xas->xa_sibs != expected_sibs)", "sibs != 0" means the from order N covers more than 1 slot, so more than 1 new xa_node is needed, "xas->xa_sibs != expected_sibs" makes sure the new order is N-1 (you can see it from how expected_sibs is assigned).
Thanks!
Let me know if you have any other question.
Thanks for the details!