From: Ackerley Tng ackerleytng@google.com
One-to-one GVA to GPA mappings can be used in the guest to set up boot sequences during which paging is enabled, hence requiring a transition from using physical to virtual addresses in consecutive instructions.
Signed-off-by: Ackerley Tng ackerleytng@google.com Signed-off-by: Ryan Afranji afranji@google.com Signed-off-by: Sagi Shahar sagis@google.com --- .../selftests/kvm/include/kvm_util_base.h | 2 + tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++--- 2 files changed, 55 insertions(+), 10 deletions(-)
diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h index 1426e88ebdc7..c2e5c5f25dfc 100644 --- a/tools/testing/selftests/kvm/include/kvm_util_base.h +++ b/tools/testing/selftests/kvm/include/kvm_util_base.h @@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type); vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, + vm_vaddr_t vaddr_min, uint32_t data_memslot); vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type); diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c index febc63d7a46b..4f1ae0f1eef0 100644 --- a/tools/testing/selftests/kvm/lib/kvm_util.c +++ b/tools/testing/selftests/kvm/lib/kvm_util.c @@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, return pgidx_start * vm->page_size; }
+/* + * VM Virtual Address Allocate Shared/Encrypted + * + * Input Args: + * vm - Virtual Machine + * sz - Size in bytes + * vaddr_min - Minimum starting virtual address + * paddr_min - Minimum starting physical address + * data_memslot - memslot number to allocate in + * encrypt - Whether the region should be handled as encrypted + * + * Output Args: None + * + * Return: + * Starting guest virtual address + * + * Allocates at least sz bytes within the virtual address space of the vm + * given by vm. The allocated bytes are mapped to a virtual address >= + * the address given by vaddr_min. Note that each allocation uses a + * a unique set of pages, with the minimum real allocation being at least + * a page. + */ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, - vm_vaddr_t vaddr_min, - enum kvm_mem_region_type type, - bool encrypt) + vm_vaddr_t vaddr_min, vm_paddr_t paddr_min, + uint32_t data_memslot, bool encrypt) { uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
virt_pgd_alloc(vm); - vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, - KVM_UTIL_MIN_PFN * vm->page_size, - vm->memslots[type], encrypt); + vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min, + data_memslot, encrypt);
/* * Find an unused range of virtual page addresses of at least @@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
/* Map the virtual pages. */ for (vm_vaddr_t vaddr = vaddr_start; pages > 0; - pages--, vaddr += vm->page_size, paddr += vm->page_size) { - + pages--, vaddr += vm->page_size, paddr += vm->page_size) { virt_pg_map(vm, vaddr, paddr);
sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); @@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type) { - return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected); + return ____vm_vaddr_alloc(vm, sz, vaddr_min, + KVM_UTIL_MIN_PFN * vm->page_size, + vm->memslots[type], vm->protected); }
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) { - return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false); + return ____vm_vaddr_alloc(vm, sz, vaddr_min, + KVM_UTIL_MIN_PFN * vm->page_size, + vm->memslots[MEM_REGION_TEST_DATA], false); }
/* @@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); }
+/** + * Allocate memory in @vm of size @sz in memslot with id @data_memslot, + * beginning with the desired address of @vaddr_min. + * + * If there isn't enough memory at @vaddr_min, find the next possible address + * that can meet the requested size in the given memslot. + * + * Return the address where the memory is allocated. + */ +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, + vm_vaddr_t vaddr_min, uint32_t data_memslot) +{ + vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min, + (vm_paddr_t)vaddr_min, data_memslot, + vm->protected); + TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva)); + + return gva; +} + /* * VM Virtual Address Allocate Pages *