Hello,
This patchset builds upon the code at
https://lore.kernel.org/lkml/20230718234512.1690985-1-seanjc@google.com/T/.
This code is available at
https://github.com/googleprodkernel/linux-cc/tree/kvm-gmem-link-migrate-rfc….
In guest_mem v11, a split file/inode model was proposed, where memslot
bindings belong to the file and pages belong to the inode. This model
lends itself well to having different VMs use separate files pointing
to the same inode.
This RFC proposes an ioctl, KVM_LINK_GUEST_MEMFD, that takes a VM and
a gmem fd, and returns another gmem fd referencing a different file
and associated with VM. This RFC also includes an update to
KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM to migrate memory context
(slot->arch.lpage_info and kvm->mem_attr_array) from source to
destination vm, intra-host.
Intended usage of the two ioctls:
1. Source VM’s fd is passed to destination VM via unix sockets
2. Destination VM uses new ioctl KVM_LINK_GUEST_MEMFD to link source
VM’s fd to a new fd.
3. Destination VM will pass new fds to KVM_SET_USER_MEMORY_REGION,
which will bind the new file, pointing to the same inode that the
source VM’s file points to, to memslots
4. Use KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM to move kvm->mem_attr_array
and slot->arch.lpage_info to the destination VM.
5. Run the destination VM as per normal
Some other approaches considered were:
+ Using the linkat() syscall, but that requires a mount/directory for
a source fd to be linked to
+ Using the dup() syscall, but that only duplicates the fd, and both
fds point to the same file
---
Ackerley Tng (11):
KVM: guest_mem: Refactor out kvm_gmem_alloc_file()
KVM: guest_mem: Add ioctl KVM_LINK_GUEST_MEMFD
KVM: selftests: Add tests for KVM_LINK_GUEST_MEMFD ioctl
KVM: selftests: Test transferring private memory to another VM
KVM: x86: Refactor sev's flag migration_in_progress to kvm struct
KVM: x86: Refactor common code out of sev.c
KVM: x86: Refactor common migration preparation code out of
sev_vm_move_enc_context_from
KVM: x86: Let moving encryption context be configurable
KVM: x86: Handle moving of memory context for intra-host migration
KVM: selftests: Generalize migration functions from
sev_migrate_tests.c
KVM: selftests: Add tests for migration of private mem
arch/x86/include/asm/kvm_host.h | 4 +-
arch/x86/kvm/svm/sev.c | 85 ++-----
arch/x86/kvm/svm/svm.h | 3 +-
arch/x86/kvm/x86.c | 221 +++++++++++++++++-
arch/x86/kvm/x86.h | 6 +
include/linux/kvm_host.h | 18 ++
include/uapi/linux/kvm.h | 8 +
tools/testing/selftests/kvm/Makefile | 1 +
.../testing/selftests/kvm/guest_memfd_test.c | 42 ++++
.../selftests/kvm/include/kvm_util_base.h | 31 +++
.../kvm/x86_64/private_mem_migrate_tests.c | 93 ++++++++
.../selftests/kvm/x86_64/sev_migrate_tests.c | 48 ++--
virt/kvm/guest_mem.c | 151 ++++++++++--
virt/kvm/kvm_main.c | 10 +
virt/kvm/kvm_mm.h | 7 +
15 files changed, 596 insertions(+), 132 deletions(-)
create mode 100644 tools/testing/selftests/kvm/x86_64/private_mem_migrate_tests.c
--
2.41.0.640.ga95def55d0-goog
'realpath' is not always available, fallback to 'readlink -f' if is not
available. They seem to work equally well in this context.
Signed-off-by: Yosry Ahmed <yosry.ahmed(a)linux.dev>
---
tools/testing/selftests/run_kselftest.sh | 9 ++++++++-
1 file changed, 8 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/run_kselftest.sh b/tools/testing/selftests/run_kselftest.sh
index 50e03eefe7ac7..0443beacf3621 100755
--- a/tools/testing/selftests/run_kselftest.sh
+++ b/tools/testing/selftests/run_kselftest.sh
@@ -3,7 +3,14 @@
#
# Run installed kselftest tests.
#
-BASE_DIR=$(realpath $(dirname $0))
+
+# Fallback to readlink if realpath is not available
+if which realpath > /dev/null; then
+ BASE_DIR=$(realpath $(dirname $0))
+else
+ BASE_DIR=$(readlink -f $(dirname $0))
+fi
+
cd $BASE_DIR
TESTS="$BASE_DIR"/kselftest-list.txt
if [ ! -r "$TESTS" ] ; then
--
2.49.0.rc1.451.g8f38331e32-goog
Misbehaving guests can cause bus locks to degrade the performance of
a system. Non-WB (write-back) and misaligned locked RMW (read-modify-write)
instructions are referred to as "bus locks" and require system wide
synchronization among all processors to guarantee the atomicity. The bus
locks can impose notable performance penalties for all processors within
the system.
Support for the Bus Lock Threshold is indicated by CPUID
Fn8000_000A_EDX[29] BusLockThreshold=1, the VMCB provides a Bus Lock
Threshold enable bit and an unsigned 16-bit Bus Lock Threshold count.
VMCB intercept bit
VMCB Offset Bits Function
14h 5 Intercept bus lock operations
Bus lock threshold count
VMCB Offset Bits Function
120h 15:0 Bus lock counter
During VMRUN, the bus lock threshold count is fetched and stored in an
internal count register. Prior to executing a bus lock within the guest,
the processor verifies the count in the bus lock register. If the count is
greater than zero, the processor executes the bus lock, reducing the count.
However, if the count is zero, the bus lock operation is not performed, and
instead, a Bus Lock Threshold #VMEXIT is triggered to transfer control to
the Virtual Machine Monitor (VMM).
A Bus Lock Threshold #VMEXIT is reported to the VMM with VMEXIT code 0xA5h,
VMEXIT_BUSLOCK. EXITINFO1 and EXITINFO2 are set to 0 on a VMEXIT_BUSLOCK.
On a #VMEXIT, the processor writes the current value of the Bus Lock
Threshold Counter to the VMCB.
Note: Currently, virtualizing the Bus Lock Threshold feature for L1 guest is
not supported.
More details about the Bus Lock Threshold feature can be found in AMD APM
[1].
v3 -> v4
- Incorporated Sean's review comments
- Added a preparatory patch to move linear_rip out of kvm_pio_request, so
that it can be used by the bus lock threshold patches.
- Added complete_userspace_buslock() function to reload bus_lock_counter
to '1' only if the usespace has not changed the RIP.
- Added changes to continue running bus_lock_counter accross the nested
transitions.
v2 -> v3
- Drop parch to add virt tag in /proc/cpuinfo.
- Incorporated Tom's review comments.
v1 -> v2
- Incorporated misc review comments from Sean.
- Removed bus_lock_counter module parameter.
- Set the value of bus_lock_counter to zero by default and reload the value by 1
in bus lock exit handler.
- Add documentation for the behavioral difference for KVM_EXIT_BUS_LOCK.
- Improved selftest for buslock to work on SVM and VMX.
- Rewrite the commit messages.
Patches are prepared on kvm-next/next (c9ea48bb6ee6).
Testing done:
- Tested the Bus Lock Threshold functionality on normal, SEV, SEV-ES and SEV-SNP guests.
- Tested the Bus Lock Threshold functionality on nested guests.
v1: https://lore.kernel.org/kvm/20240709175145.9986-4-manali.shukla@amd.com/T/
v2: https://lore.kernel.org/kvm/20241001063413.687787-4-manali.shukla@amd.com/T/
v3: https://lore.kernel.org/kvm/20241004053341.5726-1-manali.shukla@amd.com/T/
[1]: AMD64 Architecture Programmer's Manual Pub. 24593, April 2024,
Vol 2, 15.14.5 Bus Lock Threshold.
https://bugzilla.kernel.org/attachment.cgi?id=306250
Manali Shukla (3):
KVM: x86: Preparatory patch to move linear_rip out of kvm_pio_request
x86/cpufeatures: Add CPUID feature bit for the Bus Lock Threshold
KVM: SVM: Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM CPUs
Nikunj A Dadhania (2):
KVM: SVM: Enable Bus lock threshold exit
KVM: selftests: Add bus lock exit test
Documentation/virt/kvm/api.rst | 19 +++
arch/x86/include/asm/cpufeatures.h | 1 +
arch/x86/include/asm/kvm_host.h | 2 +-
arch/x86/include/asm/svm.h | 5 +-
arch/x86/include/uapi/asm/svm.h | 2 +
arch/x86/kvm/svm/nested.c | 42 ++++++
arch/x86/kvm/svm/svm.c | 38 +++++
arch/x86/kvm/svm/svm.h | 2 +
arch/x86/kvm/x86.c | 8 +-
tools/testing/selftests/kvm/Makefile.kvm | 1 +
.../selftests/kvm/x86/kvm_buslock_test.c | 135 ++++++++++++++++++
11 files changed, 249 insertions(+), 6 deletions(-)
create mode 100644 tools/testing/selftests/kvm/x86/kvm_buslock_test.c
base-commit: c9ea48bb6ee6b28bbc956c1e8af98044618fed5e
--
2.34.1
From: Yicong Yang <yangyicong(a)hisilicon.com>
Armv8.7 introduces single-copy atomic 64-byte loads and stores
instructions and its variants named under FEAT_{LS64, LS64_V}.
Add support for Armv8.7 FEAT_{LS64, LS64_V}:
- Add identifying and enabling in the cpufeature list
- Expose the support of these features to userspace through HWCAP3
and cpuinfo
- Add related hwcap test
- Handle the trap of unsupported memory (normal/uncacheable) access in a VM
A real scenario for this feature is that the userspace driver can make use of
this to implement direct WQE (workqueue entry) - a mechanism to fill WQE
directly into the hardware.
This patchset also complement with Marc's patchset v2[1] for handling LS64*
trapped if not advertised for a VM.
[1] https://lore.kernel.org/linux-arm-kernel/20250310122505.2857610-1-maz@kerne…
Tested with updated hwcap test:
On host:
root@localhost:/tmp# dmesg | grep "All CPU(s) started"
[ 0.504846] CPU: All CPU(s) started at EL2
root@localhost:/tmp# ./hwcap
[...]
# LS64 present
ok 217 cpuinfo_match_LS64
ok 218 sigill_LS64
ok 219 # SKIP sigbus_LS64
# LS64_V present
ok 220 cpuinfo_match_LS64_V
ok 221 sigill_LS64_V
ok 222 # SKIP sigbus_LS64_V
# 115 skipped test(s) detected. Consider enabling relevant config options to improve coverage.
# Totals: pass:107 fail:0 xfail:0 xpass:0 skip:115 error:0
On guest:
root@localhost:/# dmesg | grep "All CPU(s) started"
[ 0.205580] CPU: All CPU(s) started at EL1
root@localhost:/mnt# ./hwcap
[...]
# LS64 present
ok 217 cpuinfo_match_LS64
ok 218 sigill_LS64
ok 219 # SKIP sigbus_LS64
# LS64_V present
ok 220 cpuinfo_match_LS64_V
ok 221 sigill_LS64_V
ok 222 # SKIP sigbus_LS64_V
# 115 skipped test(s) detected. Consider enabling relevant config options to improve coverage.
# Totals: pass:107 fail:0 xfail:0 xpass:0 skip:115 error:0
Change since v1:
- Drop the suppport for LS64_ACCDATA
- handle the DABT of unsupported memory type after checking the memory attributes
Link: https://lore.kernel.org/linux-arm-kernel/20241202135504.14252-1-yangyicong@…
Yicong Yang (6):
arm64: Provide basic EL2 setup for FEAT_{LS64, LS64_V} usage at EL0/1
arm64: Add support for FEAT_{LS64, LS64_V}
KVM: arm64: Enable FEAT_{LS64, LS64_V} in the supported guest
kselftest/arm64: Add HWCAP test for FEAT_{LS64, LS64_V}
arm64: Add ESR.DFSC definition of unsupported exclusive or atomic
access
KVM: arm64: Handle DABT caused by LS64* instructions on unsupported
memory
Documentation/arch/arm64/booting.rst | 12 +++
Documentation/arch/arm64/elf_hwcaps.rst | 6 ++
arch/arm64/include/asm/el2_setup.h | 12 ++-
arch/arm64/include/asm/esr.h | 8 ++
arch/arm64/include/asm/hwcap.h | 2 +
arch/arm64/include/asm/kvm_emulate.h | 7 ++
arch/arm64/include/uapi/asm/hwcap.h | 2 +
arch/arm64/kernel/cpufeature.c | 51 +++++++++++++
arch/arm64/kernel/cpuinfo.c | 2 +
arch/arm64/kvm/inject_fault.c | 35 +++++++++
arch/arm64/kvm/mmu.c | 37 +++++++++-
arch/arm64/tools/cpucaps | 2 +
tools/testing/selftests/arm64/abi/hwcap.c | 90 +++++++++++++++++++++++
13 files changed, 264 insertions(+), 2 deletions(-)
--
2.24.0
Some unit tests intentionally trigger warning backtraces by passing bad
parameters to kernel API functions. Such unit tests typically check the
return value from such calls, not the existence of the warning backtrace.
Such intentionally generated warning backtraces are neither desirable
nor useful for a number of reasons.
- They can result in overlooked real problems.
- A warning that suddenly starts to show up in unit tests needs to be
investigated and has to be marked to be ignored, for example by
adjusting filter scripts. Such filters are ad-hoc because there is
no real standard format for warnings. On top of that, such filter
scripts would require constant maintenance.
One option to address problem would be to add messages such as "expected
warning backtraces start / end here" to the kernel log. However, that
would again require filter scripts, it might result in missing real
problematic warning backtraces triggered while the test is running, and
the irrelevant backtrace(s) would still clog the kernel log.
Solve the problem by providing a means to identify and suppress specific
warning backtraces while executing test code. Support suppressing multiple
backtraces while at the same time limiting changes to generic code to the
absolute minimum. Architecture specific changes are kept at minimum by
retaining function names only if both CONFIG_DEBUG_BUGVERBOSE and
CONFIG_KUNIT are enabled.
The first patch of the series introduces the necessary infrastructure.
The second patch introduces support for counting suppressed backtraces.
This capability is used in patch three to implement unit tests.
Patch four documents the new API.
The next two patches add support for suppressing backtraces in drm_rect
and dev_addr_lists unit tests. These patches are intended to serve as
examples for the use of the functionality introduced with this series.
The remaining patches implement the necessary changes for all
architectures with GENERIC_BUG support.
With CONFIG_KUNIT enabled, image size increase with this series applied is
approximately 1%. The image size increase (and with it the functionality
introduced by this series) can be avoided by disabling
CONFIG_KUNIT_SUPPRESS_BACKTRACE.
This series is based on the RFC patch and subsequent discussion at
https://patchwork.kernel.org/project/linux-kselftest/patch/02546e59-1afe-4b…
and offers a more comprehensive solution of the problem discussed there.
Design note:
Function pointers are only added to the __bug_table section if both
CONFIG_KUNIT_SUPPRESS_BACKTRACE and CONFIG_DEBUG_BUGVERBOSE are enabled
to avoid image size increases if CONFIG_KUNIT is disabled. There would be
some benefits to adding those pointers all the time (reduced complexity,
ability to display function names in BUG/WARNING messages). That change,
if desired, can be made later.
Checkpatch note:
Remaining checkpatch errors and warnings were deliberately ignored.
Some are triggered by matching coding style or by comments interpreted
as code, others by assembler macros which are disliked by checkpatch.
Suggestions for improvements are welcome.
Changes since RFC:
- Introduced CONFIG_KUNIT_SUPPRESS_BACKTRACE
- Minor cleanups and bug fixes
- Added support for all affected architectures
- Added support for counting suppressed warnings
- Added unit tests using those counters
- Added patch to suppress warning backtraces in dev_addr_lists tests
Changes since v1:
- Rebased to v6.9-rc1
- Added Tested-by:, Acked-by:, and Reviewed-by: tags
[I retained those tags since there have been no functional changes]
- Introduced KUNIT_SUPPRESS_BACKTRACE configuration option, enabled by
default.
Changes since v2:
- Rebased to v6.9-rc2
- Added comments to drm warning suppression explaining why it is needed.
- Added patch to move conditional code in arch/sh/include/asm/bug.h
to avoid kerneldoc warning
- Added architecture maintainers to Cc: for architecture specific patches
- No functional changes
Changes since v3:
- Rebased to v6.14-rc6
- Dropped net: "kunit: Suppress lock warning noise at end of dev_addr_lists tests"
since 3db3b62955cd6d73afde05a17d7e8e106695c3b9
- Added __kunit_ and KUNIT_ prefixes.
- Tested on interessed architectures.
----
Guenter Roeck (14):
bug/kunit: Core support for suppressing warning backtraces
kunit: bug: Count suppressed warning backtraces
kunit: Add test cases for backtrace warning suppression
kunit: Add documentation for warning backtrace suppression API
drm: Suppress intentional warning backtraces in scaling unit tests
x86: Add support for suppressing warning backtraces
arm64: Add support for suppressing warning backtraces
loongarch: Add support for suppressing warning backtraces
parisc: Add support for suppressing warning backtraces
s390: Add support for suppressing warning backtraces
sh: Add support for suppressing warning backtraces
sh: Move defines needed for suppressing warning backtraces
riscv: Add support for suppressing warning backtraces
powerpc: Add support for suppressing warning backtraces
Documentation/dev-tools/kunit/usage.rst | 30 ++++++-
arch/arm64/include/asm/asm-bug.h | 27 ++++--
arch/arm64/include/asm/bug.h | 8 +-
arch/loongarch/include/asm/bug.h | 42 +++++++---
arch/parisc/include/asm/bug.h | 29 +++++--
arch/powerpc/include/asm/bug.h | 37 +++++++--
arch/riscv/include/asm/bug.h | 38 ++++++---
arch/s390/include/asm/bug.h | 17 +++-
arch/sh/include/asm/bug.h | 28 ++++++-
arch/x86/include/asm/bug.h | 21 +++--
drivers/gpu/drm/tests/drm_rect_test.c | 16 ++++
include/asm-generic/bug.h | 16 +++-
include/kunit/bug.h | 56 +++++++++++++
include/kunit/test.h | 1 +
include/linux/bug.h | 13 +++
lib/bug.c | 51 +++++++++++-
lib/kunit/Kconfig | 9 ++
lib/kunit/Makefile | 7 +-
lib/kunit/backtrace-suppression-test.c | 104 ++++++++++++++++++++++++
lib/kunit/bug.c | 42 ++++++++++
20 files changed, 519 insertions(+), 73 deletions(-)
create mode 100644 include/kunit/bug.h
create mode 100644 lib/kunit/backtrace-suppression-test.c
create mode 100644 lib/kunit/bug.c
--
2.34.1
Basics and overview
===================
Software with larger attack surfaces (e.g. network facing apps like databases,
browsers or apps relying on browser runtimes) suffer from memory corruption
issues which can be utilized by attackers to bend control flow of the program
to eventually gain control (by making their payload executable). Attackers are
able to perform such attacks by leveraging call-sites which rely on indirect
calls or return sites which rely on obtaining return address from stack memory.
To mitigate such attacks, risc-v extension zicfilp enforces that all indirect
calls must land on a landing pad instruction `lpad` else cpu will raise software
check exception (a new cpu exception cause code on riscv).
Similarly for return flow, risc-v extension zicfiss extends architecture with
- `sspush` instruction to push return address on a shadow stack
- `sspopchk` instruction to pop return address from shadow stack
and compare with input operand (i.e. return address on stack)
- `sspopchk` to raise software check exception if comparision above
was a mismatch
- Protection mechanism using which shadow stack is not writeable via
regular store instructions
More information an details can be found at extensions github repo [1].
Equivalent to landing pad (zicfilp) on x86 is `ENDBRANCH` instruction in Intel
CET [3] and branch target identification (BTI) [4] on arm.
Similarly x86's Intel CET has shadow stack [5] and arm64 has guarded control
stack (GCS) [6] which are very similar to risc-v's zicfiss shadow stack.
x86 and arm64 support for user mode shadow stack is already in mainline.
Kernel awareness for user control flow integrity
================================================
This series picks up Samuel Holland's envcfg changes [2] as well. So if those are
being applied independently, they should be removed from this series.
Enabling:
In order to maintain compatibility and not break anything in user mode, kernel
doesn't enable control flow integrity cpu extensions on binary by default.
Instead exposes a prctl interface to enable, disable and lock the shadow stack
or landing pad feature for a task. This allows userspace (loader) to enumerate
if all objects in its address space are compiled with shadow stack and landing
pad support and accordingly enable the feature. Additionally if a subsequent
`dlopen` happens on a library, user mode can take a decision again to disable
the feature (if incoming library is not compiled with support) OR terminate the
task (if user mode policy is strict to have all objects in address space to be
compiled with control flow integirty cpu feature). prctl to enable shadow stack
results in allocating shadow stack from virtual memory and activating for user
address space. x86 and arm64 are also following same direction due to similar
reason(s).
clone/fork:
On clone and fork, cfi state for task is inherited by child. Shadow stack is
part of virtual memory and is a writeable memory from kernel perspective
(writeable via a restricted set of instructions aka shadow stack instructions)
Thus kernel changes ensure that this memory is converted into read-only when
fork/clone happens and COWed when fault is taken due to sspush, sspopchk or
ssamoswap. In case `CLONE_VM` is specified and shadow stack is to be enabled,
kernel will automatically allocate a shadow stack for that clone call.
map_shadow_stack:
x86 introduced `map_shadow_stack` system call to allow user space to explicitly
map shadow stack memory in its address space. It is useful to allocate shadow
for different contexts managed by a single thread (green threads or contexts)
risc-v implements this system call as well.
signal management:
If shadow stack is enabled for a task, kernel performs an asynchronous control
flow diversion to deliver the signal and eventually expects userspace to issue
sigreturn so that original execution can be resumed. Even though resume context
is prepared by kernel, it is in user space memory and is subject to memory
corruption and corruption bugs can be utilized by attacker in this race window
to perform arbitrary sigreturn and eventually bypass cfi mechanism.
Another issue is how to ensure that cfi related state on sigcontext area is not
trampled by legacy apps or apps compiled with old kernel headers.
In order to mitigate control-flow hijacting, kernel prepares a token and place
it on shadow stack before signal delivery and places address of token in
sigcontext structure. During sigreturn, kernel obtains address of token from
sigcontext struture, reads token from shadow stack and validates it and only
then allow sigreturn to succeed. Compatiblity issue is solved by adopting
dynamic sigcontext management introduced for vector extension. This series
re-factor the code little bit to allow future sigcontext management easy (as
proposed by Andy Chiu from SiFive)
config and compilation:
Introduce a new risc-v config option `CONFIG_RISCV_USER_CFI`. Selecting this
config option picks the kernel support for user control flow integrity. This
optin is presented only if toolchain has shadow stack and landing pad support.
And is on purpose guarded by toolchain support. Reason being that eventually
vDSO also needs to be compiled in with shadow stack and landing pad support.
vDSO compile patches are not included as of now because landing pad labeling
scheme is yet to settle for usermode runtime.
To get more information on kernel interactions with respect to
zicfilp and zicfiss, patch series adds documentation for
`zicfilp` and `zicfiss` in following:
Documentation/arch/riscv/zicfiss.rst
Documentation/arch/riscv/zicfilp.rst
How to test this series
=======================
Toolchain
---------
$ git clone git@github.com:sifive/riscv-gnu-toolchain.git -b cfi-dev
$ riscv-gnu-toolchain/configure --prefix=<path-to-where-to-build> --with-arch=rv64gc_zicfilp_zicfiss --enable-linux --disable-gdb --with-extra-multilib-test="rv64gc_zicfilp_zicfiss-lp64d:-static"
$ make -j$(nproc)
Qemu
----
Get the lastest qemu
$ cd qemu
$ mkdir build
$ cd build
$ ../configure --target-list=riscv64-softmmu
$ make -j$(nproc)
Opensbi
-------
$ git clone git@github.com:deepak0414/opensbi.git -b v6_cfi_spec_split_opensbi
$ make CROSS_COMPILE=<your riscv toolchain> -j$(nproc) PLATFORM=generic
Linux
-----
Running defconfig is fine. CFI is enabled by default if the toolchain
supports it.
$ make ARCH=riscv CROSS_COMPILE=<path-to-cfi-riscv-gnu-toolchain>/build/bin/riscv64-unknown-linux-gnu- -j$(nproc) defconfig
$ make ARCH=riscv CROSS_COMPILE=<path-to-cfi-riscv-gnu-toolchain>/build/bin/riscv64-unknown-linux-gnu- -j$(nproc)
In case you're building your own rootfs using toolchain, please make sure you
pick following patch to ensure that vDSO compiled with lpad and shadow stack.
"arch/riscv: compile vdso with landing pad"
Branch where above patch can be picked
https://github.com/deepak0414/linux-riscv-cfi/tree/vdso_user_cfi_v6.12-rc1
Running
-------
Modify your qemu command to have:
-bios <path-to-cfi-opensbi>/build/platform/generic/firmware/fw_dynamic.bin
-cpu rv64,zicfilp=true,zicfiss=true,zimop=true,zcmop=true
vDSO related Opens (in the flux)
=================================
I am listing these opens for laying out plan and what to expect in future
patch sets. And of course for the sake of discussion.
Shadow stack and landing pad enabling in vDSO
----------------------------------------------
vDSO must have shadow stack and landing pad support compiled in for task
to have shadow stack and landing pad support. This patch series doesn't
enable that (yet). Enabling shadow stack support in vDSO should be
straight forward (intend to do that in next versions of patch set). Enabling
landing pad support in vDSO requires some collaboration with toolchain folks
to follow a single label scheme for all object binaries. This is necessary to
ensure that all indirect call-sites are setting correct label and target landing
pads are decorated with same label scheme.
How many vDSOs
---------------
Shadow stack instructions are carved out of zimop (may be operations) and if CPU
doesn't implement zimop, they're illegal instructions. Kernel could be running on
a CPU which may or may not implement zimop. And thus kernel will have to carry 2
different vDSOs and expose the appropriate one depending on whether CPU implements
zimop or not.
References
==========
[1] - https://github.com/riscv/riscv-cfi
[2] - https://lore.kernel.org/all/20240814081126.956287-1-samuel.holland@sifive.c…
[3] - https://lwn.net/Articles/889475/
[4] - https://developer.arm.com/documentation/109576/0100/Branch-Target-Identific…
[5] - https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-i…
[6] - https://lwn.net/Articles/940403/
---
changelog
---------
v12:
- It seems like I had accidently squashed arch agnostic indirect branch
tracking prctl and riscv implementation of those prctls. Split them again.
- set_shstk_status/set_indir_lp_status perform CSR writes only when CPU
support is available. As suggested by Zong Li.
- Some minor clean up in kselftests as suggested by Zong Li.
v11:
- patch "arch/riscv: compile vdso with landing pad" was unconditionally
selecting `_zicfilp` for vDSO compile. fixed that. Changed `lpad 1` to
to `lpad 0`.
v10:
- dropped "mm: helper `is_shadow_stack_vma` to check shadow stack vma". This patch
is not that interesting to this patch series for risc-v. There are instances in
arch directories where VM_SHADOW_STACK flag is anyways used. Dropping this patch
to expedite merging in riscv tree.
- Took suggestions from `Clement` on "riscv: zicfiss / zicfilp enumeration" to
validate presence of cfi based on config.
- Added a patch for vDSO to have `lpad 0`. I had omitted this earlier to make sure
we add single vdso object with cfi enabled. But a vdso object with scheme of
zero labeled landing pad is least common denominator and should work with all
objects of zero labeled as well as function-signature labeled objects.
v9:
- rebased on master (39a803b754d5 fix braino in "9p: fix ->rename_sem exclusion")
- dropped "mm: Introduce ARCH_HAS_USER_SHADOW_STACK" (master has it from arm64/gcs)
- dropped "prctl: arch-agnostic prctl for shadow stack" (master has it from arm64/gcs)
v8:
- rebased on palmer/for-next
- dropped samuel holland's `envcfg` context switch patches.
they are in parlmer/for-next
v7:
- Removed "riscv/Kconfig: enable HAVE_EXIT_THREAD for riscv"
Instead using `deactivate_mm` flow to clean up.
see here for more context
https://lore.kernel.org/all/20230908203655.543765-1-rick.p.edgecombe@intel.…
- Changed the header include in `kselftest`. Hopefully this fixes compile
issue faced by Zong Li at SiFive.
- Cleaned up an orphaned change to `mm/mmap.c` in below patch
"riscv/mm : ensure PROT_WRITE leads to VM_READ | VM_WRITE"
- Lock interfaces for shadow stack and indirect branch tracking expect arg == 0
Any future evolution of this interface should accordingly define how arg should
be setup.
- `mm/map.c` has an instance of using `VM_SHADOW_STACK`. Fixed it to use helper
`is_shadow_stack_vma`.
- Link to v6: https://lore.kernel.org/r/20241008-v5_user_cfi_series-v6-0-60d9fe073f37@riv…
v6:
- Picked up Samuel Holland's changes as is with `envcfg` placed in
`thread` instead of `thread_info`
- fixed unaligned newline escapes in kselftest
- cleaned up messages in kselftest and included test output in commit message
- fixed a bug in clone path reported by Zong Li
- fixed a build issue if CONFIG_RISCV_ISA_V is not selected
(this was introduced due to re-factoring signal context
management code)
v5:
- rebased on v6.12-rc1
- Fixed schema related issues in device tree file
- Fixed some of the documentation related issues in zicfilp/ss.rst
(style issues and added index)
- added `SHADOW_STACK_SET_MARKER` so that implementation can define base
of shadow stack.
- Fixed warnings on definitions added in usercfi.h when
CONFIG_RISCV_USER_CFI is not selected.
- Adopted context header based signal handling as proposed by Andy Chiu
- Added support for enabling kernel mode access to shadow stack using
FWFT
(https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/src/ext-firmware…)
- Link to v5: https://lore.kernel.org/r/20241001-v5_user_cfi_series-v1-0-3ba65b6e550f@riv…
(Note: I had an issue in my workflow due to which version number wasn't
picked up correctly while sending out patches)
v4:
- rebased on 6.11-rc6
- envcfg: Converged with Samuel Holland's patches for envcfg management on per-
thread basis.
- vma_is_shadow_stack is renamed to is_vma_shadow_stack
- picked up Mark Brown's `ARCH_HAS_USER_SHADOW_STACK` patch
- signal context: using extended context management to maintain compatibility.
- fixed `-Wmissing-prototypes` compiler warnings for prctl functions
- Documentation fixes and amending typos.
- Link to v4: https://lore.kernel.org/all/20240912231650.3740732-1-debug@rivosinc.com/
v3:
- envcfg
logic to pick up base envcfg had a bug where `ENVCFG_CBZE` could have been
picked on per task basis, even though CPU didn't implement it. Fixed in
this series.
- dt-bindings
As suggested, split into separate commit. fixed the messaging that spec is
in public review
- arch_is_shadow_stack change
arch_is_shadow_stack changed to vma_is_shadow_stack
- hwprobe
zicfiss / zicfilp if present will get enumerated in hwprobe
- selftests
As suggested, added object and binary filenames to .gitignore
Selftest binary anyways need to be compiled with cfi enabled compiler which
will make sure that landing pad and shadow stack are enabled. Thus removed
separate enable/disable tests. Cleaned up tests a bit.
- Link to v3: https://lore.kernel.org/lkml/20240403234054.2020347-1-debug@rivosinc.com/
v2:
- Using config `CONFIG_RISCV_USER_CFI`, kernel support for riscv control flow
integrity for user mode programs can be compiled in the kernel.
- Enabling of control flow integrity for user programs is left to user runtime
- This patch series introduces arch agnostic `prctls` to enable shadow stack
and indirect branch tracking. And implements them on riscv.
---
---
Changes in v12:
- EDITME: describe what is new in this series revision.
- EDITME: use bulletpoints and terse descriptions.
- Link to v11: https://lore.kernel.org/r/20250310-v5_user_cfi_series-v11-0-86b36cbfb910@ri…
Changes in v11:
- EDITME: describe what is new in this series revision.
- EDITME: use bulletpoints and terse descriptions.
- Link to v10: https://lore.kernel.org/r/20250210-v5_user_cfi_series-v10-0-163dcfa31c60@ri…
---
Andy Chiu (1):
riscv: signal: abstract header saving for setup_sigcontext
Clément Léger (1):
riscv: Add Firmware Feature SBI extensions definitions
Deepak Gupta (25):
mm: VM_SHADOW_STACK definition for riscv
dt-bindings: riscv: zicfilp and zicfiss in dt-bindings (extensions.yaml)
riscv: zicfiss / zicfilp enumeration
riscv: zicfiss / zicfilp extension csr and bit definitions
riscv: usercfi state for task and save/restore of CSR_SSP on trap entry/exit
riscv/mm : ensure PROT_WRITE leads to VM_READ | VM_WRITE
riscv mm: manufacture shadow stack pte
riscv mmu: teach pte_mkwrite to manufacture shadow stack PTEs
riscv mmu: write protect and shadow stack
riscv/mm: Implement map_shadow_stack() syscall
riscv/shstk: If needed allocate a new shadow stack on clone
riscv: Implements arch agnostic shadow stack prctls
prctl: arch-agnostic prctl for indirect branch tracking
riscv: Implements arch agnostic indirect branch tracking prctls
riscv/traps: Introduce software check exception
riscv/signal: save and restore of shadow stack for signal
riscv/kernel: update __show_regs to print shadow stack register
riscv/ptrace: riscv cfi status and state via ptrace and in core files
riscv/hwprobe: zicfilp / zicfiss enumeration in hwprobe
riscv: enable kernel access to shadow stack memory via FWFT sbi call
riscv: kernel command line option to opt out of user cfi
riscv: create a config for shadow stack and landing pad instr support
riscv: Documentation for landing pad / indirect branch tracking
riscv: Documentation for shadow stack on riscv
kselftest/riscv: kselftest for user mode cfi
Jim Shu (1):
arch/riscv: compile vdso with landing pad
Documentation/arch/riscv/index.rst | 2 +
Documentation/arch/riscv/zicfilp.rst | 115 +++++
Documentation/arch/riscv/zicfiss.rst | 176 +++++++
.../devicetree/bindings/riscv/extensions.yaml | 14 +
arch/riscv/Kconfig | 20 +
arch/riscv/Makefile | 5 +-
arch/riscv/include/asm/asm-prototypes.h | 1 +
arch/riscv/include/asm/assembler.h | 44 ++
arch/riscv/include/asm/cpufeature.h | 13 +
arch/riscv/include/asm/csr.h | 16 +
arch/riscv/include/asm/entry-common.h | 2 +
arch/riscv/include/asm/hwcap.h | 2 +
arch/riscv/include/asm/mman.h | 25 +
arch/riscv/include/asm/mmu_context.h | 7 +
arch/riscv/include/asm/pgtable.h | 30 +-
arch/riscv/include/asm/processor.h | 2 +
arch/riscv/include/asm/sbi.h | 26 +
arch/riscv/include/asm/thread_info.h | 3 +
arch/riscv/include/asm/usercfi.h | 89 ++++
arch/riscv/include/asm/vector.h | 3 +
arch/riscv/include/uapi/asm/hwprobe.h | 2 +
arch/riscv/include/uapi/asm/ptrace.h | 22 +
arch/riscv/include/uapi/asm/sigcontext.h | 1 +
arch/riscv/kernel/Makefile | 1 +
arch/riscv/kernel/asm-offsets.c | 8 +
arch/riscv/kernel/cpufeature.c | 13 +
arch/riscv/kernel/entry.S | 31 +-
arch/riscv/kernel/head.S | 12 +
arch/riscv/kernel/process.c | 26 +-
arch/riscv/kernel/ptrace.c | 83 ++++
arch/riscv/kernel/signal.c | 142 +++++-
arch/riscv/kernel/sys_hwprobe.c | 2 +
arch/riscv/kernel/sys_riscv.c | 10 +
arch/riscv/kernel/traps.c | 43 ++
arch/riscv/kernel/usercfi.c | 530 +++++++++++++++++++++
arch/riscv/kernel/vdso/Makefile | 12 +
arch/riscv/kernel/vdso/flush_icache.S | 4 +
arch/riscv/kernel/vdso/getcpu.S | 4 +
arch/riscv/kernel/vdso/rt_sigreturn.S | 4 +
arch/riscv/kernel/vdso/sys_hwprobe.S | 4 +
arch/riscv/mm/init.c | 2 +-
arch/riscv/mm/pgtable.c | 17 +
include/linux/cpu.h | 4 +
include/linux/mm.h | 7 +
include/uapi/linux/elf.h | 1 +
include/uapi/linux/prctl.h | 27 ++
kernel/sys.c | 30 ++
tools/testing/selftests/riscv/Makefile | 2 +-
tools/testing/selftests/riscv/cfi/.gitignore | 3 +
tools/testing/selftests/riscv/cfi/Makefile | 10 +
tools/testing/selftests/riscv/cfi/cfi_rv_test.h | 82 ++++
tools/testing/selftests/riscv/cfi/riscv_cfi_test.c | 78 +++
tools/testing/selftests/riscv/cfi/shadowstack.c | 385 +++++++++++++++
tools/testing/selftests/riscv/cfi/shadowstack.h | 27 ++
54 files changed, 2195 insertions(+), 29 deletions(-)
---
base-commit: 39a803b754d5224a3522016b564113ee1e4091b2
change-id: 20240930-v5_user_cfi_series-3dc332f8f5b2
--
- debug
This patch series introduces UFFDIO_MOVE feature to userfaultfd, which
has long been implemented and maintained by Andrea in his local tree [1],
but was not upstreamed due to lack of use cases where this approach would
be better than allocating a new page and copying the contents. Previous
upstraming attempts could be found at [6] and [7].
UFFDIO_COPY performs ~20% better than UFFDIO_MOVE when the application
needs pages to be allocated [2]. However, with UFFDIO_MOVE, if pages are
available (in userspace) for recycling, as is usually the case in heap
compaction algorithms, then we can avoid the page allocation and memcpy
(done by UFFDIO_COPY). Also, since the pages are recycled in the
userspace, we avoid the need to release (via madvise) the pages back to
the kernel [3].
We see over 40% reduction (on a Google pixel 6 device) in the compacting
thread’s completion time by using UFFDIO_MOVE vs. UFFDIO_COPY. This was
measured using a benchmark that emulates a heap compaction implementation
using userfaultfd (to allow concurrent accesses by application threads).
More details of the usecase are explained in [3].
Furthermore, UFFDIO_MOVE enables moving swapped-out pages without
touching them within the same vma. Today, it can only be done by mremap,
however it forces splitting the vma.
TODOs for follow-up improvements:
- cross-mm support. Known differences from single-mm and missing pieces:
- memcg recharging (might need to isolate pages in the process)
- mm counters
- cross-mm deposit table moves
- cross-mm test
- document the address space where src and dest reside in struct
uffdio_move
- TLB flush batching. Will require extensive changes to PTL locking in
move_pages_pte(). OTOH that might let us reuse parts of mremap code.
Changes since v5 [10]:
- added logic to split large folios in move_pages_pte(),
per David Hildenbrand
- added check for PAE before split_huge_pmd() to avoid the split if the
move operation can't be done
- replaced calls to default_huge_page_size() with read_pmd_pagesize() in
uffd_move_pmd test, per David Hildenbrand
- fixed the condition in uffd_move_test_common() checking if area
alignment is needed
Changes since v4 [9]:
- added Acked-by in patch 1, per Peter Xu
- added description for ctx, mm and mode parameters of move_pages(),
per kernel test robot
- added Reviewed-by's, per Peter Xu and Axel Rasmussen
- removed unused operations in uffd_test_case_ops
- refactored uffd-unit-test changes to avoid using global variables and
handle pmd moves without page size overrides, per Peter Xu
Changes since v3 [8]:
- changed retry path in folio_lock_anon_vma_read() to unlock and then
relock RCU, per Peter Xu
- removed cross-mm support from initial patchset, per David Hildenbrand
- replaced BUG_ONs with VM_WARN_ON or WARN_ON_ONCE, per David Hildenbrand
- added missing cache flushing, per Lokesh Gidra and Peter Xu
- updated manpage text in the patch description, per Peter Xu
- renamed internal functions from "remap" to "move", per Peter Xu
- added mmap_changing check after taking mmap_lock, per Peter Xu
- changed uffd context check to ensure dst_mm is registered onto uffd we
are operating on, Peter Xu and David Hildenbrand
- changed to non-maybe variants of maybe*_mkwrite(), per David Hildenbrand
- fixed warning for CONFIG_TRANSPARENT_HUGEPAGE=n, per kernel test robot
- comments cleanup, per David Hildenbrand and Peter Xu
- checks for VM_IO,VM_PFNMAP,VM_HUGETLB,..., per David Hildenbrand
- prevent moving pinned pages, per Peter Xu
- changed uffd tests to call move uffd_test_ctx_clear() at the end of the
test run instead of in the beginning of the next run
- added support for testcase-specific ops
- added test for moving PMD-aligned blocks
Changes since v2 [5]:
- renamed UFFDIO_REMAP to UFFDIO_MOVE, per David Hildenbrand
- rebase over mm-unstable to use folio_move_anon_rmap(),
per David Hildenbrand
- added text for manpage explaining DONTFORK and KSM requirements for this
feature, per David Hildenbrand
- check for anon_vma changes in the fast path of folio_lock_anon_vma_read,
per Peter Xu
- updated the title and description of the first patch,
per David Hildenbrand
- updating comments in folio_lock_anon_vma_read() explaining the need for
anon_vma checks, per David Hildenbrand
- changed all mapcount checks to PageAnonExclusive, per Jann Horn and
David Hildenbrand
- changed counters in remap_swap_pte() from MM_ANONPAGES to MM_SWAPENTS,
per Jann Horn
- added a check for PTE change after folio is locked in remap_pages_pte(),
per Jann Horn
- added handling of PMD migration entries and bailout when pmd_devmap(),
per Jann Horn
- added checks to ensure both src and dst VMAs are writable, per Peter Xu
- added UFFD_FEATURE_MOVE, per Peter Xu
- removed obsolete comments, per Peter Xu
- renamed remap_anon_pte to remap_present_pte, per Peter Xu
- added a comment for folio_get_anon_vma() explaining the need for
anon_vma checks, per Peter Xu
- changed error handling in remap_pages() to make it more clear,
per Peter Xu
- changed EFAULT to EAGAIN to retry when a hugepage appears or disappears
from under us, per Peter Xu
- added links to previous upstreaming attempts, per David Hildenbrand
Changes since v1 [4]:
- add mmget_not_zero in userfaultfd_remap, per Jann Horn
- removed extern from function definitions, per Matthew Wilcox
- converted to folios in remap_pages_huge_pmd, per Matthew Wilcox
- use PageAnonExclusive in remap_pages_huge_pmd, per David Hildenbrand
- handle pgtable transfers between MMs, per Jann Horn
- ignore concurrent A/D pte bit changes, per Jann Horn
- split functions into smaller units, per David Hildenbrand
- test for folio_test_large in remap_anon_pte, per Matthew Wilcox
- use pte_swp_exclusive for swapcount check, per David Hildenbrand
- eliminated use of mmu_notifier_invalidate_range_start_nonblock,
per Jann Horn
- simplified THP alignment checks, per Jann Horn
- refactored the loop inside remap_pages, per Jann Horn
- additional clarifying comments, per Jann Horn
Main changes since Andrea's last version [1]:
- Trivial translations from page to folio, mmap_sem to mmap_lock
- Replace pmd_trans_unstable() with pte_offset_map_nolock() and handle its
possible failure
- Move pte mapping into remap_pages_pte to allow for retries when source
page or anon_vma is contended. Since pte_offset_map_nolock() start RCU
read section, we can't block anymore after mapping a pte, so have to unmap
the ptesm do the locking and retry.
- Add and use anon_vma_trylock_write() to avoid blocking while in RCU
read section.
- Accommodate changes in mmu_notifier_range_init() API, switch to
mmu_notifier_invalidate_range_start_nonblock() to avoid blocking while in
RCU read section.
- Open-code now removed __swp_swapcount()
- Replace pmd_read_atomic() with pmdp_get_lockless()
- Add new selftest for UFFDIO_MOVE
[1] https://gitlab.com/aarcange/aa/-/commit/2aec7aea56b10438a3881a20a411aa4b1fc…
[2] https://lore.kernel.org/all/1425575884-2574-1-git-send-email-aarcange@redha…
[3] https://lore.kernel.org/linux-mm/CA+EESO4uO84SSnBhArH4HvLNhaUQ5nZKNKXqxRCyj…
[4] https://lore.kernel.org/all/20230914152620.2743033-1-surenb@google.com/
[5] https://lore.kernel.org/all/20230923013148.1390521-1-surenb@google.com/
[6] https://lore.kernel.org/all/1425575884-2574-21-git-send-email-aarcange@redh…
[7] https://lore.kernel.org/all/cover.1547251023.git.blake.caldwell@colorado.ed…
[8] https://lore.kernel.org/all/20231009064230.2952396-1-surenb@google.com/
[9] https://lore.kernel.org/all/20231028003819.652322-1-surenb@google.com/
[10] https://lore.kernel.org/all/20231121171643.3719880-1-surenb@google.com/
Andrea Arcangeli (2):
mm/rmap: support move to different root anon_vma in
folio_move_anon_rmap()
userfaultfd: UFFDIO_MOVE uABI
Suren Baghdasaryan (3):
selftests/mm: call uffd_test_ctx_clear at the end of the test
selftests/mm: add uffd_test_case_ops to allow test case-specific
operations
selftests/mm: add UFFDIO_MOVE ioctl test
Documentation/admin-guide/mm/userfaultfd.rst | 3 +
fs/userfaultfd.c | 72 +++
include/linux/rmap.h | 5 +
include/linux/userfaultfd_k.h | 11 +
include/uapi/linux/userfaultfd.h | 29 +-
mm/huge_memory.c | 122 ++++
mm/khugepaged.c | 3 +
mm/rmap.c | 30 +
mm/userfaultfd.c | 614 +++++++++++++++++++
tools/testing/selftests/mm/uffd-common.c | 39 +-
tools/testing/selftests/mm/uffd-common.h | 9 +
tools/testing/selftests/mm/uffd-stress.c | 5 +-
tools/testing/selftests/mm/uffd-unit-tests.c | 192 ++++++
13 files changed, 1130 insertions(+), 4 deletions(-)
--
2.43.0.rc2.451.g8631bc7472-goog