Op 15-08-13 14:45, Marcin Ĺšlusarz schreef:
2013/8/15 Maarten Lankhorst maarten.lankhorst@canonical.com:
A fence can be attached to a buffer which is being filled or consumed by hw, to allow userspace to pass the buffer without waiting to another device. For example, userspace can call page_flip ioctl to display the next frame of graphics after kicking the GPU but while the GPU is still rendering. The display device sharing the buffer with the GPU would attach a callback to get notified when the GPU's rendering-complete IRQ fires, to update the scan-out address of the display, without having to wake up userspace.
A driver must allocate a fence context for each execution ring that can run in parallel. The function for this takes an argument with how many contexts to allocate:
- fence_context_alloc()
A fence is transient, one-shot deal. It is allocated and attached to one or more dma-buf's. When the one that attached it is done, with the pending operation, it can signal the fence:
- fence_signal()
To have a rough approximation whether a fence is fired, call:
- fence_is_signaled()
The dma-buf-mgr handles tracking, and waiting on, the fences associated with a dma-buf.
The one pending on the fence can add an async callback:
- fence_add_callback()
The callback can optionally be cancelled with:
- fence_remove_callback()
To wait synchronously, optionally with a timeout:
- fence_wait()
- fence_wait_timeout()
A default software-only implementation is provided, which can be used by drivers attaching a fence to a buffer when they have no other means for hw sync. But a memory backed fence is also envisioned, because it is common that GPU's can write to, or poll on some memory location for synchronization. For example:
fence = custom_get_fence(...); if ((seqno_fence = to_seqno_fence(fence)) != NULL) { dma_buf *fence_buf = fence->sync_buf; get_dma_buf(fence_buf);
... tell the hw the memory location to wait ... custom_wait_on(fence_buf, fence->seqno_ofs, fence->seqno);
} else { /* fall-back to sw sync * / fence_add_callback(fence, my_cb); }
On SoC platforms, if some other hw mechanism is provided for synchronizing between IP blocks, it could be supported as an alternate implementation with it's own fence ops in a similar way.
enable_signaling callback is used to provide sw signaling in case a cpu waiter is requested or no compatible hardware signaling could be used.
The intention is to provide a userspace interface (presumably via eventfd) later, to be used in conjunction with dma-buf's mmap support for sw access to buffers (or for userspace apps that would prefer to do their own synchronization).
v1: Original v2: After discussion w/ danvet and mlankhorst on #dri-devel, we decided that dma-fence didn't need to care about the sw->hw signaling path (it can be handled same as sw->sw case), and therefore the fence->ops can be simplified and more handled in the core. So remove the signal, add_callback, cancel_callback, and wait ops, and replace with a simple enable_signaling() op which can be used to inform a fence supporting hw->hw signaling that one or more devices which do not support hw signaling are waiting (and therefore it should enable an irq or do whatever is necessary in order that the CPU is notified when the fence is passed). v3: Fix locking fail in attach_fence() and get_fence() v4: Remove tie-in w/ dma-buf.. after discussion w/ danvet and mlankorst we decided that we need to be able to attach one fence to N dma-buf's, so using the list_head in dma-fence struct would be problematic. v5: [ Maarten Lankhorst ] Updated for dma-bikeshed-fence and dma-buf-manager. v6: [ Maarten Lankhorst ] I removed dma_fence_cancel_callback and some comments about checking if fence fired or not. This is broken by design. waitqueue_active during destruction is now fatal, since the signaller should be holding a reference in enable_signalling until it signalled the fence. Pass the original dma_fence_cb along, and call __remove_wait in the dma_fence_callback handler, so that no cleanup needs to be performed. v7: [ Maarten Lankhorst ] Set cb->func and only enable sw signaling if fence wasn't signaled yet, for example for hardware fences that may choose to signal blindly. v8: [ Maarten Lankhorst ] Tons of tiny fixes, moved __dma_fence_init to header and fixed include mess. dma-fence.h now includes dma-buf.h All members are now initialized, so kmalloc can be used for allocating a dma-fence. More documentation added. v9: Change compiler bitfields to flags, change return type of enable_signaling to bool. Rework dma_fence_wait. Added dma_fence_is_signaled and dma_fence_wait_timeout. s/dma// and change exports to non GPL. Added fence_is_signaled and fence_enable_sw_signaling calls, add ability to override default wait operation. v10: remove event_queue, use a custom list, export try_to_wake_up from scheduler. Remove fence lock and use a global spinlock instead, this should hopefully remove all the locking headaches I was having on trying to implement this. enable_signaling is called with this lock held. v11: Use atomic ops for flags, lifting the need for some spin_lock_irqsaves. However I kept the guarantee that after fence_signal returns, it is guaranteed that enable_signaling has either been called to completion, or will not be called any more.
Add contexts and seqno to base fence implementation. This allows you to wait for less fences, by testing for seqno + signaled, and then only wait on the later fence. Add FENCE_TRACE, FENCE_WARN, and FENCE_ERR. This makes debugging easier. An CONFIG_DEBUG_FENCE will be added to turn off the FENCE_TRACE spam, and another runtime option can turn it off at runtime.
v12: Add CONFIG_FENCE_TRACE. Add missing documentation for the fence->context and fence->seqno members. v13: Fixup CONFIG_FENCE_TRACE kconfig description. Move fence_context_alloc to fence. Simplify fence_later. Kill priv member to fence_cb. Signed-off-by: Maarten Lankhorst maarten.lankhorst@canonical.com
Documentation/DocBook/device-drivers.tmpl | 2 drivers/base/Kconfig | 10 + drivers/base/Makefile | 2 drivers/base/fence.c | 312 ++++++++++++++++++++++++++ include/linux/fence.h | 344 +++++++++++++++++++++++++++++ 5 files changed, 669 insertions(+), 1 deletion(-) create mode 100644 drivers/base/fence.c create mode 100644 include/linux/fence.h
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl index fe397f9..95d0db9 100644 --- a/Documentation/DocBook/device-drivers.tmpl +++ b/Documentation/DocBook/device-drivers.tmpl @@ -126,6 +126,8 @@ X!Edrivers/base/interface.c </sect1> <sect1><title>Device Drivers DMA Management</title> !Edrivers/base/dma-buf.c +!Edrivers/base/fence.c +!Iinclude/linux/fence.h !Edrivers/base/reservation.c !Iinclude/linux/reservation.h !Edrivers/base/dma-coherent.c diff --git a/drivers/base/Kconfig b/drivers/base/Kconfig index 5daa259..2bf0add 100644 --- a/drivers/base/Kconfig +++ b/drivers/base/Kconfig @@ -200,6 +200,16 @@ config DMA_SHARED_BUFFER APIs extension; the file's descriptor can then be passed on to other driver.
+config FENCE_TRACE
bool "Enable verbose FENCE_TRACE messages"
default n
"default n" is superfluous
But it's used a lot in the kernel:
~/linux$ git grep default.y$ | wc -l 1292 ~/linux$ git grep default.n$ | wc -l 697
... +void release_fence(struct kref *kref)
All functions, except this one, follow "fence_$something" pattern. Passing kref is a bit odd.
This function is not intended to be called directly. It's used by fence_put.
.... +/**
- fence_remove_callback - remove a callback from the signaling list
- @fence: [in] the fence to wait on
- @cb: [in] the callback to remove
- Remove a previously queued callback from the fence. This function returns
- true is the callback is succesfully removed, or false if the fence has
true _if_ the callback is...
Oh wow, I had to read that 3 times to spot that typo after you pointed it out. :P
...
+extern void release_fence(struct kref *kref);
+/**
- fence_put - decreases refcount of the fence
- @fence: [in] fence to reduce refcount of
- */
+static inline void fence_put(struct fence *fence) +{
if (WARN_ON(!fence))
return;
kref_put(&fence->refcount, release_fence);
+}
+int fence_signal(struct fence *fence); +int __fence_signal(struct fence *fence); +long fence_default_wait(struct fence *fence, bool intr, signed long timeout); +int fence_add_callback(struct fence *fence, struct fence_cb *cb,
fence_func_t func, void *priv);
+bool fence_remove_callback(struct fence *fence, struct fence_cb *cb); +void fence_enable_sw_signaling(struct fence *fence);
Some functions are documented in the header and some only in the source file. Why not move all API docs into the header?
The declarations are put next to the code. The inlines are defined in the headers, so they get documented there.
+/**
- fence_is_signaled - Return an indication if the fence is signaled yet.
- @fence: [in] the fence to check
- Returns true if the fence was already signaled, false if not. Since this
- function doesn't enable signaling, it is not guaranteed to ever return true
- If fence_add_callback, fence_wait or fence_enable_sw_signaling
- haven't been called before.
- It's recommended for seqno fences to call fence_signal when the
- operation is complete, it makes it possible to prevent issues from
- wraparound between time of issue and time of use by checking the return
- value of this function before calling hardware-specific wait instructions.
- */
+static inline bool +fence_is_signaled(struct fence *fence)
Shouldn't it be "fence_was_signaled"?
No, unless you believe the fence ended up in a state where it is signaled, and now no longer is. ;)
~Maarten